
EJB Techniques: Primary Keys and Container Saad Rehmani
Managed Persistence in EJB 2.0 Dealing with EJBs 10

Feature: Introduction to Session Brian A. Russell
Management Create a better experience for your Web site visitors 16

J2EE Projects: Delivering a J2EE Kunal Shah & Ajit Sagar
Application Suite A case study 24

Industry Commentary: Combating the Jacquie Barker
‘Object Crisis’ The foundation for Java proficiency 36

Java Techniques: Java Design Michael Barlotta
Using interfaces and abstract classes to create flexible code 38

Feature: Creating a Custom Launcher John Chamberlain
Say goodbye to java.lang.NoClassDefFound 42

Java & Bluetooth:Wireless J2ME Apps Bruce Hopkins
Share and collaborate in a wireless network 54

Product Review: FULCRUM Kedar Godse
Professional Edition 1.1 by AccelTree 68

First Look: IntelliJ IDEA 3.0 Duane Fields
by JetBrains, Inc. 72

SYS-CON
MEDIA

RETAILERS PLEASE DISPLAY
UNTIL NOVEMBER 30, 2002

TM

JDJEDGE CONFERENCE & EXPO

INSIDE PAGE 75

From the Editor
Alan Williamson pg. 7

J2EE Editorial
Ajit Sagar pg. 9

J2SE Editorial
Jason Bell pg. 34

J2ME Editorial
Jason R. Briggs pg. 52

Career Opportunities
Bill Baloglu & Billy Palmieri

pg. 104

Cubist Threads
Blair Wyman pg. 106

FULL CONFERENCE PROGRAM

OCTOBER 1–3, 2002

SAN JOSE, CA

Java COM

Java COM

2 SEPTEMBER 2002

sonic
www.sonic.com

3SEPTEMBER 2002

Java COM

zerog
www.zerog.com

apple

Java COM

4 SEPTEMBER 2002

5SEPTEMBER 2002

Java COM

www.apple.com

Java COM

6 SEPTEMBER 2002

Java COM

bea
www.bea.com

7SEPTEMBER 2002

Java COM

AUTHOR BIO
Alan Williamson is editor-in-chief of Java Developer’s Journal. During the day he holds the post of chief technical officer at n-ary
(consulting) Ltd, one of the first companies in the UK to specialize in Java at the server side.
Rumor has it he welcomes all suggestions and comments.

F R O M T H E E D I T O RD IF

‘Tale of Two Camps’

alan@sys-con.com

ALAN WILLIAMSON EDITOR-IN-CHIEF

It has been far from quiet on the JDJ
forums front this month – a result of the
recent news item we broke regarding the

now infamous Gartner report. This report
claimed that there will be a major shortage
of Java developers in the forthcoming year.
Which is good news…I think! So why are you
all in an uproar?

Opinions appear to be divided on this
news, with two camps emerging: the Java
developers who are currently out of work and
struggling to find Java contracts versus the
employers who claim they can’t find qualified
Java people. Tales of mock job listings (on-
and offline) with phantom positions are the
stuff of legends. But is there some fire to all
this smoke? We all have our own agency hor-
ror stories. For my sins, I was once offered the
post I was trying to recruit for! Which camp
has it right? Who can really tell? Only time will.

Looking through the posts and other
online sites such as Slashdot, it’s clear that as
a community drawn together by a common
language, we may have suffered from the
early hype of Sun and others. The hype sur-
rounding Java gained fever pitch only a cou-
ple of years after Java appeared in Web
browsers in its legendary gray rectangle.

The next wave hit when the Java Servlet API
proved Java was a serious contender on the
server side, an area largely untouched by plat-
form-independent solutions. It can be argued
that had it not been for the Servlet API, Java
would not be considered the powerhouse it is
now. It was the Servlet API that firmly put the
power of Java on the server side at a time when
we were asking more from our Web sites, look-
ing for innovative ways to produce dynamic
content – the height of the dot.com fever pitch.

With this hype came the usual “jump-on-
the-bandwagon” brigade; universities
churning out so-called Java programmers,
companies guaranteeing (and some still
are!) Java certification for a given fee, and
agencies promising all the gold in Fort Knox

for salaries have all contributed toward a
watering-down of the general Java skill base.

In this drive to get people into the “in-
crowd” we seem to have lost the core com-
petency that should bind us together: soft-
ware engineering, not Java. From that per-
spective it is easy to sympathize with the
employer who is desperately looking for
skilled software engineers (AKA Java devel-
opers) and not the “…in 21 days” adopters.

What of the other camp, which claims the
jobs aren’t there?

That may be, but were the jobs/positions
there in the first place? The dot.com boom
managed to artificially inflate everything, par-
ticularly the recruitment market. Java’s popu-
larity was at its peak during this period, and
you need only track the exhibitor lists over all
the past JavaOnes to see this trend play out.
There has not been a computing language
that has caught the imagination of the world’s
media like Java has, and I believe we are feel-
ing the backlash of this early, misdirected
hype. We got caught up in selling Java the
technology and forgot what the tool really is: a
programming language to solve problems.

At the end of the day we are software engi-
neers, designed to solve problems. That is
what we are trained, paid, and get out of bed
for. That we choose Java to express our solu-
tions is a bonus, and as Jason Briggs com-
mented this month in his editorial, we have
many feathers in our cap and strings in our
bow, but Java is the one we definitely prefer.

Java’s power is in its sheer beauty. The ability
to write a single piece of code and have it run in a
plethora of devices, from high-end enterprise
machines to handheld devices and mobile
phones, is the result of the engineering genius
that lies underneath the covers for us all to utilize.

Forget the razzamatazz and the glitz of
the dot.com era; we have real work to do,
real-world solutions to deliver with a tool
that can save us time and energy.

Java isn’t .NET…it’s .NOW!

I N T E R N A T I O N A L A D V I S O R Y B O A R D
• CALVIN AUSTIN (Lead Software Engineer, J2SE Linux Project, Sun Microsystems),

• JAMES DUNCAN DAVIDSON (JavaServlet API/XMP API, Sun Microsystems),
• JASON HUNTER (Senior Technologist, CollabNet), • JON S. STEVENS (Apache Software

Foundation), • RICK ROSS (President, JavaLobby), • BILLROTH (Group Product
Manager, Sun Microsystems), • BILL WILLETT (CEO, Programmer’s Paradise)

• BLAIR WYMAN (Chief Software Architect IBM Rochester)

E D I T O R I A L
EDITOR-IN-CHIEF: ALAN WILLIAMSON

EDITORIAL DIRECTOR: JEREMY GEELAN
EXECUTIVE EDITOR: NANCY VALENTINE

J2EE EDITOR: AJIT SAGAR
J2ME EDITOR: JASON R. BRIGGS
J2SE EDITOR: JASON BELL

PRODUCT REVIEW EDITOR: JIM MILBERY
FOUNDING EDITOR: SEAN RHODY

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN: JIM MORGAN

ASSOCIATE ART DIRECTOR: LOUIS F. CUFFARI
EDITOR: M’LOU PINKHAM

MANAGING EDITOR: CHERYL VAN SISE
ASSOCIATE EDITORS: JAMIE MATUSOW

GAIL SCHULTZ
JEAN CASSIDY

ASSISTANT EDITOR: JENNIFER STILLEY
ONLINE EDITOR: LIN GOETZ

TECHNICAL EDITOR: BAHADIR KARUV, PH.D.

W R I T E R S I N T H I S I S S U E
BILL BALOGLU, JACQUIE BARKER, MICHAEL BARLOTTA, JASON BELL,

JASON R. BRIGGS, JOHN CHAMBERLAIN, DUANE FIELDS,
KEDAR GODSE, BRUCE HOPKINS, BILLY PALMIERI, BILL RAY,

SAAD REHMANI, BRIAN A. RUSSELL, AJIT SAGAR,
KUNAL SHAH, ALAN WILLIAMSON, BLAIR WYMAN

S U B S C R I P T I O N S :
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: SUBSCRIBE@SYS-CON.COM
COVER PRICE: $5.99/ISSUE

DOMESTIC: $49.99/YR. (12 ISSUES)
CANADA/MEXICO: $79.99/YR. OVERSEAS: $99.99/YR.

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $10/EA., INTERNATIONAL $15/EA.

E D I T O R I A L O F F I C E S :

SYS-CON MEDIA 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is published monthly
(12 times a year) for $49.99 by SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices. POSTMASTER: Send address
changes to: JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T :
Copyright © 2002 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and

retrieval system, without written permission. For promotional reprints, contact reprint coor-
dinator Carrie Gebert, carrieg@sys-con.com. SYS-CON Publications, Inc., reserves the right
to revise, republish and authorize its readers to use the articles submitted for publication.

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

J2SE
H

om
e

J2E
E

J2M
E

Java COM

motorola
www.motorola.com

Java COM

8 SEPTEMBER 2002

9SEPTEMBER 2002

ajit@sys-con.com

J 2 E E E D I T O R I A LO R

AJIT SAGAR J2EE EDITOR

Verifying Java for the Enterprise

J 2 E E I N D E XX

9

10

26

16

Verifying Java for the
Enterprise
Today the market for J2EE is
mature enough so that appli-
cation and framework alter-
natives are available from
several competing sources.
As a result, there’s a need for
standard metrics and creden-
tials that can be used by
companies to evaluate short-
list vendor solutions for their
specific requirements.
by Ajit Sagar

Primary Keys and
Container-Managed
Persistence in EJB 2.0
This article walks you
through the details and some
of the decisions that must be
made when implementing
container-managed persist-
ence in Enterprise
JavaBeans.
by Saad Rehmani

Introduction to Session
Management
Session tracking is the
process of maintaining infor-
mation, or state, about Web
site visitors as they move
from page to page. I focus on
the easy-to-use yet powerful
HttpSession interface provid-
ed by the Java Servlet
specification.
by Brian A. Russell

Delivering a J2EE
Application Suite
With the rapid adoption of
J2EE has come the realization
that more than just J2EE
expertise is needed to suc-
cessfully develop enterprise
applications. We describe a
practical approach to release
and change management for a
successful J2EE project
including setting up the envi-
ronment.
by Kunal Shah and Ajit Sagar

J2SE
H

om
e

J2E
E

J2M
E

About three months ago, my two-
year old son discovered the word
“cup.” He would call everything a

cup, though he had no clue what a cup
was. Finally we figured out a way for him to
call a cup a cup – we pointed to a cup every
time he uttered the word. In my technolog-
ical world of J2EE, I could map this activity
to certification and verification.

Today the market for J2EE is mature
enough that application and framework
alternatives are available from several com-
peting sources. As a result, there’s a need for
standard metrics and credentials that can
be used by companies to evaluate short-list
vendor solutions for their specific require-
ments. From the solution providers’ per-
spective, credentials help them get their
foot into a prospective client’s door. From a
technical perspective, these credentials can
take the following forms:
• The technical team’s profile
• The maturity and reliability of their

product suite in the context of the
client’s environment

Given the existing and growing base of
J2EE architects and developers in the mar-
ket, the personal profile of each team
member plays a large role. This is where
certification comes in. Various levels of Java
certification that address different facets of
J2EE are offered by Sun Microsystems, as
well as other major Java proponents like
IBM and Oracle. At the same time, major
application server vendors such as BEA and
IBM offer their own certification that veri-
fies the ability of a person to use J2EE in
their app server–specific environments.

When building a J2EE-based solution,
a major concern of a solution provider is
the viability of the tools and development
frameworks used. And one of the biggest
messages of the Java platform is that it’s
portable. Sun helped bring the message
together with their J2EE Blueprints and
Pet Store reference application.

The basic premise of J2EE portability is
the ability of an application to function
across multiple application servers, which is
where verification comes in. The good news
is that the recently released Java Verification
Program from Sun Microsystems addresses
this issue. It’s designed to identify enterprise
applications developed with J2EE technolo-
gy and intended to be portable across differ-
ent J2EE implementations. The program
outlines the tests needed to receive the Java
verification certification. Products that com-
plete the Java AVK for the Enterprise testing
process can apply for the Java Verification
Program and Trademark license. More infor-
mation on the Java Verification Program can
be found at http://java.sun.com/j2ee/veri-
fied/index.html.

Several app-server vendors offer add-ons
that may not be portable across other app
servers, but provide a tremendous value-add.

For example, Macromedia has developed
their own version of the Pet Store called the
Pet Market – touted as a “rich Internet appli-
cation” – built on Macromedia’s MX family of
products. According to Macromedia, the Pet
Market serves as a blueprint for best prac-
tices for usability, architecture, and coding.
The Pet Market serves as a reference applica-
tion for portability across a J2EE application
server for server-side components, and
portability across commerce platforms for
Web applications. I call this a combination of
good technology, good sense, and good mar-
keting.

As their initiatives mature, there’s a
growing need for good reference sources
in the market to guide developers through
the design process.

• • •
I would like to mention a couple of good

books I picked up from a new publisher –
Apress. Java Collections is an excellent ref-
erence with clear and concise examples.
And Java FrontEnd Technologies had some
very useful guidelines for JSP and servlet
design in the context of J2EE.

AUTHOR BIO
Ajit Sagar is the J2EE editor of JDJ and the founding editor of XML-Journal. Ajit is the director of engineering with Controlling Factor,

a leading B2B software solutions firm based in Dallas, and is well versed in Java,Web services, and XML technologies.

Java COM

Java COM

10 SEPTEMBER 2002

J2
SE

H
om

e
J2

E
E

J2
M

E
E J B T E C H N I Q U E S

Of course, there is the usual discrimi-
nator. These articles are not based pri-
marily on the EJB specification and what
you can and cannot do with EJBs;
instead, they concentrate on informa-

tion derived from hard-earned experi-
ence you’ll find useful when dealing
with EJBs.

What’s a Primary Key?
The primary key in an EJB is the sub-

set of its attributes, which are guaran-
teed to be unique. Informing the con-
tainer of the contents of an entity’s pri-
mary key allows it to store and later,
using the PK, retrieve the same entity.
Primary keys always provide a handle to
the entity, regardless of whether it’s in
memory or storage.

There, that sounded abstract
enough, on to reality. Persistence
mechanisms in EJB containers, at
least those that are efficient and
widely accepted, are closely tied to
databases. Furthermore, although
there are a few object-oriented data-
bases in the market, their acceptance
is limited compared to their relational
ancestors.

In essence, relational databases
manage reads, writes, and searches on
tables that are made up of columns and
rows. Entity beans map cleanly to tables;
each column maps to an attribute; each
row maps to an entity. This is not true in
coarse-grained approaches where one
entity may be responsible for multiple
rows in multiple tables, but that
approach is no longer a necessity due to
performance gains made in EJB 2.0’s
handling of a finely grained object
model.

What’s a Good Primary Key?
Choosing which unique part of an

entity’s attributes the primary key
should be composed of is not an easy
task. It gets exponentially harder to
guarantee amid changing requirements.
For example, the first and last name
attributes in an entity modeling
Employees might be considered unique
at design time, but this might not hold
true in the long run. Primary keys that
are subsets of their attributes are trou-
blesome because uniqueness tends to
fade as data accumulates and new
attributes are added to the entity.

At times, adding new attributes can
mean adding a new differentiator, which
must be factored into the logical pri-
mary key of the entity. As a result, earlier
guarantees of uniqueness are no longer
valid. If we were to add a middle initial
attribute to the example entity we used
earlier, it would have to be added to the
primary key, resulting in a lot of refac-
toring. Figure 1 shows the difference
adding an attribute to an entity can have
on both a single and compound primary
key.

Although it’s possible to use a string
instead of an integer, this approach has
several problems, such as slightly slower
performance when doing lookups based
on strings, string concatenation not
being an effective way to extend the pri-
mary key, and the fact that containers
support only autoincrementing integral
primary keys.

WRITTEN BY
SAAD REHMANI

This series of articles will walk you through the details and
some of the decisions that must be made when implementing con-
tainer-managed persistence in Enterprise JavaBeans.

Single versus compound
primary keys

Primary Keys and Container
Managed Persistence in EJB 2.0

FIGURE 1 Adding an attribute

11SEPTEMBER 2002

Java COM

rational
www.rational.com

Java COM

12 SEPTEMBER 2002

E J B T E C H N I Q U E S

Another issue with multiattribute
primary keys arises when working with
some container-managed relationships.
When dealing with a many-to-many
relationship between two entities, the
underlying database table that’s model-
ing this relationship consists of
columns that match the primary keys
from both entities. If the primary keys
of both entities are compound and a
common attribute name is shared
between them, the database layer can-
not differentiate between them at the
column level.

Because these hard lessons have
been learned multiple times over, using
an automatically generated integer is
something I would highly recommend.
Since it’s autoincremented by the con-
tainer as the primary key for an entity,
not only is it the easiest to implement,
it’s also the most flexible over time. The
only caveat to using automatically gen-
erated integral primary keys is the con-
tainer cannot enforce uniqueness. If we
were to create three different entities
with the same attributes and used an
autoincremented integer as the primary
key, the container would not complain
about duplication since the autoincre-
mented integer primary key would still
be unique. In some cases, this may be
valid and duplicates of the logical pri-

mary key might be supported by the
business logic, while other scenarios
might not allow duplication.

Enforcing Logical Primary Keys in the Database
One way to avoid this pitfall is to add

constraints to the database that don’t
allow this to happen. Even though it
makes the existence of a database under-
neath the persistence layer visible, ruin-
ing encapsulation, it leverages what data-
bases do much better than EJB contain-
ers: it keeps track of data. A quick detour
through database constraints from an
EJB perspective might be helpful.

Although most EJB containers are able
to generate the underlying persistence
schema, very few people use it directly in
production, mostly because the tables
created by the container contain no con-
straints. Not only are constraints impor-
tant in terms of disallowing bad data, they
also provide important performance
hints to the database. All relational data-
bases are able to define the columns in a
table that make up the primary key. They
also enable us to define unique indexes.
In case you’re wondering, primary keys
are specialized unique indexes.

If logical uniqueness is not enforced
on the entity layer via a multiattribute
primary key, enforcing it on the database
layer is a useful and effective method of

guaranteeing uniqueness. Since both the
logical primary key and the autoincre-
ment attribute need to be uniquely inde-
pendent of each other, defining the pri-
mary key on the database level to be log-
ical and defining a unique index for the
actual autoincremented primary key
achieves a constraint that disallows
duplicate entries, and an index that
allows for fast lookups when searching
by the actual primary key.

The programmatic alternative is to
create an entity finder based on the log-
ical primary key, then check for the
nonexistence of an entity every time
before creating it, thus guaranteeing
that no duplicates are generated.

Summary
In an evolving marketplace, business

requirements keep changing. As prom-
ises of matchlessness weaken to assur-
ances and less, and modeled entities
take on more and more properties,
something as important as the primary
key of an entity should be as constant as
possible. This can best be achieved by a
single primary key that’s autogenerated,
an integer, and not dependent on the
portion of the entity that’s sure to
change over time.

J2
SE

H
om

e
J2

E
E

J2
M

E

bonga@aitchisonians.org

int
www.int.com

AUTHOR BIO
Saad Rehmani is

senior software engi-
neer at a small

startup that does
big things. His

current
responsibilities

include
extensive work with
J2EE in general and
EJB 2.0 in particular.
Before realizing how
awesome Java was,

Saad was heavily
involved in various

projects ranging
from kernel modules

to pseudo-realtime
state propagation
between clusters.

13SEPTEMBER 2002

Java COM

crystal decisions
crystaldecisions.com

Java COM

14 SEPTEMBER 2002

infragistics

www.infragistics.com

15SEPTEMBER 2002

Java COM

There are a number of ways to handle session tracking, but
our focus is on the easy-to-use yet powerful HttpSession inter-
face provided by the Java Servlet specification. Before we get
into the HttpSession interface, let’s look at some other ways of
maintaining state.

Session-Tracking Techniques
At one time Web developers used Web site visitors’ IP

addresses to track the sessions. This approach was inflexible
and had many flaws. The main problem was that proxy servers
eliminated the use of individual IP addresses. Users no longer
had unique addresses, so this technique couldn’t work proper-
ly. Another way of handling session tracking is the use of the
HTML hidden field:

<INPUT TYPE="hidden" NAME="user"VALUE="Jennifer">

This technique required server-side scripting that would
dynamically generate the HTML code that contained the
“user” field. Server-side code was also required to read the
field and match it to information about this user on the
server.

Another session-tracking technique is URL rewriting. In
this approach, identification field(s) are appended to the end
of each URL for a Web site. The following HTML code demon-
strates this method:

Order Now!

This approach is similar to hidden fields. The difference is
that hidden fields can only be used in a form.

A common way of session tracking is the use of cookies. A
cookie is information that’s stored as a name/value pair and
transmitted from the server to the browser. Cookies contain-
ing unique user information can be used to tie specific visitors
to information about them on the server. The Java Servlet
specification provides a simple cookie API that allows you to
write and retrieve cookies. The complete API can be found on
Sun’s Java Web site, http://java.sun.com. The following code
shows how to create a new cookie:

Cookie user = new Cookie(“user”,"Jennifer");

user.setMaxAge(3600);

response.addCookie(user);

J2
SE

H
om

e
J2

E
E

J2
M

E

SEPTEMBER 200216

Java COM

17SEPTEMBER 2002

Java COM

oracle
www.oracle.com

This code creates a cookie with a name of “user” and a
value of “Jennifer”. The cookie’s expiration date is set with the
setMaxAge() method to 3,600 seconds from the time the
browser receives the cookie. The following code demonstrates
how you would retrieve the value for a specific cookie:

String user = “”;

Cookie[] cookies = request.getCookies();

if (cookies != null) {

for (int i = 0; i < cookies.length; i++) {

if (cookies[i].getName().equals(“user”)) user =

cookies[i].getValue();

}

}

In this code, an array of cookies is retrieved from the
HttpServletRequest object using the getCookies() method.
The array is walked through until a cookie with the name of
“user” is returned by the getName() method. Once the cookie
is found, the getValue() method is called to retrieve the value
of the cookie.

The use of cookies provides a flexible and easy option for
handling session tracking; however, it does present some
problems. The information in the cookie is stored on the
client’s browser in a text file that can be easily read and manip-
ulated, and this information is transmitted unsecured across
the Internet. But the main problem is that they can be dis-
abled through a setting in the Web browser. Web sites that rely
on cookies for session tracking will be unable to track users
who have disabled cookies.

Sessions in Java
The session management techniques we have looked at so

far all have a common security issue: they transmit data in
plain text. A powerful session-tracking solution is needed that’s
more secure and flexible. This is where the Java HttpSession
API comes in. The HttpSession API provides a simple mecha-

nism for storing information about individual users on the
application server. The API provides access to a session

object that can be used to store other objects. The abil-
ity to tie objects to a particular user is impor-

tant when working in an object-oriented envi-
ronment. It allows you to quickly and efficiently
save and retrieve JavaBeans that you may be
using to identify your site’s visitors, to hold prod-

uct information for display on your online store,
or to track products that potential customers have
placed in their shopping carts.

A session object is created on the application server,
usually in a Java servlet or a JavaServer Page. The object
is stored on the application server and a unique identi-
fier called a session ID is assigned to it. The session
object and session ID are handled by a session manag-

er on the application server. Figure 1 illustrates this
relationship. Each session ID assigned by the
application server has zero or more key/value

pairs tied to it. The values are objects that you
place in the session. Assign each of those objects a

name, and each name must have an object with it because a
null is not allowed.

For this session-tracking technique to work, the session ID
must be sent to the client’s computer. A cookie is used to store
the session ID on the Web site visitor’s computer. This is auto-
matically handled by the application server. Simply create the
session object and begin using it. The application server will,
by default, create the session ID and store it in a cookie. The
browser will send the cookie back to the server every time a

page is requested. The application server, via the server’s ses-
sion manager, will match the session ID from the cookie to a
session object. The session object is then placed in the
HttpServletRequest object and you retrieve it with the
getSession() method.

As we discussed earlier, some Web site visitors will have
cookies disabled in their browsers. To get around this problem
and continue using sessions, use URL rewriting in your code.
URL rewriting appends the session ID to the URL for every
page that’s requested. The only problem here is that you must
rewrite every link in your HTML code as well as those from
servlet to servlet, or servlet to JSP.

The procedure for URL rewriting is quite simple and
requires only the use of two methods found in the
HttpServletResponse interface. These two methods,
encodeURL() and encodeRedirectURL(), are used to append
the session ID to the URL. This allows the server to track users
as they move through your Web pages, but it requires that
every URL be rewritten. The string returned by the methods
will have the session ID appended to it only if the server deter-
mines that it’s required. If the user’s browser supports cookies,
the returned URL will not be altered. Also, the returned URL
won’t be altered if the application server is configured to not
use URL rewriting. The format of the altered URL will vary
based on different application server implementations; how-
ever, the common format will be the addition of a parameter,
such as “sessionID=uniqueIDnumber”. The parameter name
(in this case “sessionID”) is usually controlled through a con-
figuration setting on the server. The value of the parameter
(“uniqueIDnumber” in this example) is the unique session ID
assigned by the server’s session manager and is a long series of
letters and numbers. The following line of HTML code from a
JSP creates a link to another JSP:

Product Listing

Clicking on this link would send the user to the product.jsp
page. Using URL rewriting, the same code would be written as
follows:

<A HREF="<%= response.encodeURL("/products/product.jsp")

%>">Product Listing

The returned string from the encodeURL() method would
contain the session ID. On a Tomcat 3.2 application server, the
result of this line of code would be:

<A HREF="http://www.yourservername.com/products/

product.jsp;$sessionid$xxxx">Product Listing

The xxxx would actually be a unique session ID generated
by the server. The other method you can use for rewriting

J2
SE

H
om

e
J2

E
E

J2
M

E

18 SEPTEMBER 2002

Java COM

FIGURE 1 Session IDs and session objects

19SEPTEMBER 2002

Java COM

?

sitraka
www.sitraka.com

URLs is the encodeRedirectURL(). It’s used only in a servlet or
JSP that calls the sendRedirect() method of the HttpServlet-
Response interface. The following code is a standard redirec-
tion statement:

response.sendRedirect(“http://www.yourservername.com/

products/sale.jsp”);

Using URL rewriting, the code would be:

response.sendRedirect(response.encodeRedirectURL(

“http://www.yourservername.com/products/sale.jsp”));

The application server handles the encodeRedirectURL()
method a little differently than the encodeURL() method;
however, each method produces the same result.

You should now have a good understanding of how the ses-
sion ID is tracked and matched to a session object on the serv-
er. The first step in using the session object is creating it. The
method getSession() is used to create a new session object and
to retrieve an already existing one. The getSession() method is
passed a Boolean flag of true or false. A false parameter indi-
cates that you want to retrieve a session object that already
exists. A true parameter lets the session manager know that a
session object needs to be created if one does not already
exist. The following line of code demonstrates the use of
getSession():

HttpSession session = request.getSession(true);

The getSession() method will return the session object. A
new session object is created if one does not already exist.

The server uses the session ID to find the session
object. If a session ID is not found in a cookie or the

URL, a new session object is created. You
would probably use only the getSession()

method with a true parameter at one point

in your Web application. This would be the starting
point of your site, possibly after the visitor has successfully

logged in. Other servlets in your application should use the
getSession(false) method. This will return a current session
object or null. It does not generate a new session if one does-
n’t already exist.

A number of methods are defined in the Java Servlet spec-
ification. (A complete API can be found on http://
java.sun.com.) The methods you’ll use most often and the
ones we’ll focus on are:
• setAttribute(String name, Object value): Binds an object to

this session using the name specified. Returns nothing
(void).

• getAttribute(String name): Returns the object bound with
the specified name in this session, or null if no object is
bound under this name.

• removeAttribute(String name): Removes the object bound
with the specified name from this session. Returns nothing
(void).

• invalidate(): Invalidates this session and unbinds any
objects bound to it. Returns nothing (void).

• isNew(): Returns a Boolean with a value of true if the client
does not yet know about the session or if the client chooses
not to join the session.

For an example in using sessions, we’ll look at session
management code that could be used for an online banking
application that will allow customers to view their account
information. The design of the application will follow the
Model-View-Controller (MVC) architecture. The model, or
data and business logic, will be represented by JavaBeans; the
view will be through JavaServer Pages; and the control of the
application will be handled by servlets. The ideas in these
examples can easily be implemented in other types of Web
applications.

An online banking application should have an HTML
login page where the customer can enter a login name and
password in a form. The form will submit (or post) the
name and password to a login servlet. The first thing the
servlet needs to do is verify the username and password. To
stick with the topic at hand (sessions), we’ll look only at the
code needed to handle the session. After the customer has
been verified, a Customer JavaBean can be created. The
Customer bean will contain the basic information about
this visitor and will be stored in the session. We want to cre-
ate a new session object, but we also want to invalidate a
session that may already exist. To do this, we need to
retrieve the existing object (or create a new one) and check
if it’s a new session using the isNew() method. If it’s not a
new session object, we need to invalidate it using the inval-
idate() method. In the servlet, we can accomplish this with
the following code:

HttpSession session = request.getSession (true);

if (session.isNew() == false) {

session.invalidate();

session = request.getSession(true);

}

The first line of code generates a new session object, or
retrieves an existing one. The second line sees if the session is
new by checking the value from isNew(). A true tells you the
session was just created; a false means this user already had a
session and you need to invalidate it. One possible reason the
user would have an old session is that he or she has two
accounts and logged in on one, then tried to log in on the other.

You can now add the Customer JavaBean to the session for
future use. The process of placing an object into the session
object is known as binding. The Customer object can be bound
to the session using the setAttribute() method as follows:

session.setAttribute(“CustomerBean”, Customer);

Since we’re working on a bank’s Web site, security is a pri-
ority. To be secure, every JSP and servlet needs to verify that
this user is an authorized customer before displaying any
information. To accomplish this, each servlet should contain
code that looks in the session for a Customer object and sends
any customers who do not have this object to a login page. The
following code handles this:

20 SEPTEMBER 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

“The process of placing an object into
the session object is known as binding”

altoweb
www.altoweb.com

21SEPTEMBER 2002

Java COM

Customer customerBean = (Customer)

session.getAttribute('CustomerBean');

if (customerBean == null) {

response.sendRedirect(“https://www.yourservername.com

/login.htm”);

return;

}

The customer will have a valid Customer JavaBean in the
session if he or she logged in properly. A getAttribute() on a
name that does not exist in the session will always return
null. Visitors with a null value need to log in, so we redirect
them to a login page. This code should be placed at the top
of the JSPs to prevent unauthorized use of the site. The code
should also be placed in the servlets. Remember that the JSP
creates the session variable for you, and in a servlet you must
create it yourself. Keep in mind that this is just one way of
handling security for a Web site. Some Web application
servers will handle authentication and authorization for you.

This example is just a simple demonstration on
session management. Your Web application may
require more advanced security measures.

You may have noticed that the object
returned by the getAttribute() method is

cast into a Customer object. This is necessary for
any object bound to the session. The object is stored in the
session as an Object type. To use the object in your code, you
must convert it (or cast it) back to the type of object it is.

As customers move through your site, they may wish to
retrieve various pieces of information about their accounts.
For example, they may be able to view their checking account
balance by clicking on a menu option. Following the MVC
architecture, the link would send them to a servlet that would
verify who they are and then create a CheckingAccount
JavaBean. This object would then be stored in the session
using the setAttribute() method, then the servlet would send
the customer to a JSP that uses the CheckingAccount
JavaBean to display the information about the customer’s
account.

There may be times when you want to store something in
the session other than a JavaBean, such as a text string or a
number. You need to remember that you can only bind objects
to the session. Text may be stored as a String object. You can
put a number in the session as an Integer object. The follow-
ing code demonstrates how to save a line of text and a number
in the session:

session.setAttribute(“text”,"A line of text.");

session.setAttribute(“number”, new Integer(10750));

Remember to cast the objects when they are retrieved:

String myText = (String) session.getAttribute(“text”);

int myNumber = ((Integer) session.getAttribute

('number')).intValue();

Because the session is so easy to use, you may overuse it.
Simple messages from a servlet to a JSP can be placed in the
session as String objects, but this is not the most efficient way.
Soon you’ll find that your session is loaded with messages,
and most of them are no longer needed. If you find that you’re
passing simple strings back and forth in the session, perhaps
you should consider wrapping up those messages in a special
JavaBean. This would keep the session more organized. The
session objects for each user of a Web site are stored in mem-
ory on the server. Throwing unnecessary information into the
session reduces the server’s memory resources. Store only
essential information in the session and use the
removeAttribute() method to clean out objects after you’re fin-
ished with them.

The use of the session will not only make it easier for
you to program a site, but it should also help make the Web
visit better for the user. The use of the beans and the ses-
sion allows you to write JSPs that are customized for each
user. For our bank scenario, we could use the information
in the Customer bean to create personalized pages for each
visitor. We can also use the bean to prepopulate forms for
the customer. For example, you could use a JavaBean to
store the results from a form that a visitor fills out to
request information about services offered. If the user for-

got to fill in a required field, you could use the JavaBean to
store error messages from a servlet and then display them
in the JSP. You could also populate the fields that the visitor
just filled in instead of making the visitor fill out the form
again.

The session is not intended to be used as a persistent place
to store information about a visitor. Each visitor will be
assigned a new session every time he or she logs in. A back-
end database will be needed if you want to store information
about individual users. The session should just be used to
track the user during one visit to your site. In cases where you
have a large Web site and are running multiple, redundant
application servers, you’ll need an application server that can
handle sessions across servers. This is usually handled by
placing session information into a database instead of local
memory so each application server can access the informa-
tion. And many of the commercial application servers will be
able to do this for you.

Conclusion
The use of session tracking is an important design issue

because of the complexity of today’s Web sites. As Java devel-
opers, we have access to a powerful and robust session man-
ager through the use of the HttpSession API. The session
examples that we went over in this article cover the main
capabilities of the session API. Learning all of Java’s session
management features will make your job as a Web developer
easier and help you create a better experience for your Web
site visitors.

22 SEPTEMBER 2002

brian.russell@prioritytech.com

Java COM

“As Java developers, we have access to a
powerful and robust session manager
through the use of the HttpSession API”

AUTHOR BIO
Brian A. Russell is a

software engineer
for Priority

Technologies, Inc.,
in Omaha,
Nebraska.

J2
SE

H
om

e
J2

E
E

J2
M

E

23SEPTEMBER 2002

Java COM

borland
www.borland.com

J2
SE

H
om

e
J2

E
E

J2
M

E Delivering a J2EE Application Suite

J 2 E E P R O J E C T S

The following are critical to the suc-
cess of J2EE projects:
• A well-defined component integra-

tion strategy
• The ability to select the right J2EE

platform vendor
• Good understanding of internal and

external expectations
• Evaluation of technical and nontech-

nical challenges and risks
• Availability of resources and tools
• Capabilities of the team
• Realizing that the best J2EE design

practices have to be tailored to meet
the needs of the specific project

The ultimate goal of any develop-
ment project is to produce quality soft-
ware that meets the requirements of the
customer, and is on time and under
budget. J2EE adds another dimension to
this challenge. Distributed Java projects
are highly componetized. Component-
ization has many advantages as well as
challenges, the biggest of which is bring-
ing it all together when different compo-
nents have been built in parallel.

J2EE projects typically combine a
variety of components built on EJBs,
servlets, JavaBeans, JSPs, HTML pages,
and the database. Each tier of an appli-
cation is developed separately and fol-
lows a different “life cycle” in the devel-
opment process. For example, a minor
change in the underlying database
schema or an EJB can cause serious rip-
ple effects in the application, whereas
changing a servlet or a JSP does not con-
stitute a risk of the same degree.

This article captures our recent expe-
rience in successfully managing a six-
month, 22,500 man-hour J2EE project in
a startup organization. It focuses on
engineering processes that had to be set
up to support the development of enter-
prise software. While we borrowed from
different development and design
processes, we also had to evolve our own
to custom-fit into our environment, as is
normally the case with real-world proj-
ects.

The primary motivation for writing
this article was to pen down the process-
es, pitfalls, and challenges of successful-
ly completing a fairly complex J2EE
project in a bootstrap environment. We
describe a practical approach to release
and change management for a success-
ful J2EE project including setting up the
environment; defining project teams,
the tools and processes used; and J2EE-
based design, development, and deploy-
ment.

The Environment
It goes without saying that the right

level of J2EE expertise is a must to make
a J2EE project successful. Equally
important is having the correct environ-
ment for the team to be the most pro-
ductive. The development environment
typically includes:
• An IDE that supports Java develop-

ment
• Configuration management tools and

processes that support various dis-
tributed components

• A version-control system that sup-

ports Java applications
• A bug-tracking system
• Build processes and an overall release

methodology
–The release methodology has to

incorporate the fact that business
components are built and released
in a different manner than Web com-
ponents built using servlets and
JSPs.

–The dependencies of the business
layer and the presentation layer
have to be taken into consideration
in the release process.

The release methodology in our proj-
ect was customized to support the mul-
titiered nature of J2EE architecture. The
development and release of each tier
was done separately so that a defect in
the components produced by one team
would have minimal impact on the rest
of the team.

The development teams for this proj-
ect had a couple of seasoned Java archi-
tects and developers as well as junior
engineers. The end game was to develop
a software product that was highly cus-
tomizable and would adapt to different
industry verticals. BEA WebLogic Server
was used as the application server.
Specific J2EE technologies used in this
project are discussed later in this article.

The project consisted of five major
independent applications that reflected
real-world functionality. An important
objective of the application suite was to
ensure that these components could be
run as independent products as well as

WRITTEN BY
KUNAL SHAH &

AJIT SAGAR
With the rapid adoption of J2EE has come the realization that more than just
J2EE expertise is needed to successfully develop enterprise applications.

A case study

Java COM

24 SEPTEMBER 2002

25SEPTEMBER 2002

Java COM

spirit soft
www.spirirsoft.com

Java COM

26 SEPTEMBER 2002

J 2 E E P R O J E C T S

an integrated suite. They were developed
as different applications within the same
application server.

The development team was split into
five subteams; each team had between
two and four developers and was
responsible for one application. This
turned out to be the optimum team
organization for a company of less than
30 employees.

In all, three different types of environ-
ments were set up to support the release
management process (see Figure 1).

Development Environment
The boxes in the left section of Figure

1 depict independent Windows 2000
desktops and laptops. Each developer’s
personal desktop was used as the devel-
opment environment. It had access to a
database schema that could be used for
development purposes and was focused
on a particular tier of the application –
the JSP and HTML tier, the servlet tier, the
EJB and business component layer, and
the database layer. Each developer
worked on a specific layer at a given time.

Integration Environment
The middle section of Figure 1 shows

the integration environment. A single
application server machine was set up
to run all five applications within BEA’s
application server. The application serv-
er pointed to a dedicated database
schema reserved for integration testing.
Components developed separately in
the development environment were
brought together in the integration envi-
ronment.

Staging Environment
The staging environment consisted

of two application servers and a data-
base server. This closely resembled the
production. Once the application was
integrated and packaged into an instal-
lable application, it was promoted to the
staging environment.

Project Life Cycle
The project was broadly divided into

a development phase, an integration
phase, and a test phase, as is the norm.
However, since we were in startup
mode, it was crucial to expect and
accept changes in direction in order to
market and sell the product suite. While
testing was started in parallel with the
development phase, it was not until the
integration phase that the entire appli-
cation was available for testing.

Being a startup organization, an
interesting distraction was to support
ongoing sales activities during the entire
development phase. Demos had to be
built in short periods of time for the
sales team and required the entire prod-
uct suite to function in an integrated
manner. Such unscheduled activities
can potentially derail a well-planned
development project. Instead of treating
the demos as distractions, we used them
as opportunities to develop prototypes
for the yet undeveloped features. This
enabled the sales team to present a
more complete solution to the prospec-
tive client. Even as the demos proved to
be a great advantage, there were many
challenges. The top challenges were:
• To ensure that the development effort

continued while part of the team was
diverted to build the demo. Existing
activities were reprioritized so that
they would have minimal impact on
the schedule.

• To evaluate new requirements
(generated from the demos)
and their impact on the exist-
ing design, functionality, and
schedule. If major changes

had be made to the underlying data
model or in the EJB layer, they were
less likely to make it into the release.
On the other hand, if new require-
ments could be implemented by
changing servlets or JSPs, there was a
greater chance that they would make
it into the release.

• To roll back ad hoc enhancements
into the development cycle.

Due to this continuous feedback, the
team was able to redesign certain com-
ponents to better reflect the require-
ments from the field. At least one engi-
neer from each team was assigned to
work on the demo. Putting together an
entire demo was another interesting
activity, since it was always a hybrid of
well-designed features as well as those
features that were just prototyped for
the demo. J2EE is an ideal platform for
managing a changing codebase because
of its inherent support for decoupled
components.

J2EE Technology Components
The project conformed to the stan-

dard three-tier J2EE architecture. The
application suite was built using the fol-
lowing:
• JSPs, servlets, and JavaBeans formed

the presentation layer.
• EJBs encapsulated the business logic.
• JMS was the messaging layer for the

asynchronous exchange of business
events.

• BEA WebLogic Server was used as the
application server.

• BEA WebLogic Integration was used
as the J2EE platform for business
process management.

• Oracle 9.1 database housed the busi-
ness data.

• Several third-party libraries were
deployed to support charts, graphs,
etc.

Change Management
We used Ant-based

compile scripts to set up the
integration environment.
The staging environment
was set up so that the appli-
cation could be installed via
the installer. Microsoft’s
Visual Source Safe (VSS)
was used as the version
control system.

During the develop-
ment phase, the integration
environment was built on a
regular schedule. Earlier in
the project, the frequency of
a new build was once a
week. The build frequency

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 Hardware and software environment for the project FIGURE 2 Directory structure

27SEPTEMBER 2002

Java COM

precise
www.precise.com

Java COM

28 SEPTEMBER 2002

ibm

29SEPTEMBER 2002

Java COM

www.imb.com

Java COM

30 SEPTEMBER 2002

J 2 E E P R O J E C T S
J2

SE
H

om
e

J2
E

E
J2

M
E

increased to 3–4 builds a day toward the
end of the release. The steps involved in
rebuilding the integration environment
were:
• Check out the latest code base from

VSS for the entire product suite along
with all necessary configuration files
and incremental schema changes if
applicable.

• Build the entire product suite using
Ant scripts.

• Configure all the necessary properties
files.

• Apply incremental schema changes to
the database.

Since each application could be run
as a standalone system, the following
changes had to be made via configura-
tion files to execute them within the
same environment:
• By default, each application was set

up with its own set of libraries, JAR
files, classpaths, property files, etc.
The applications had to be configured
so that they shared a common envi-
ronment. Thus a common configura-
tion file had to be created that would
be used by all the applications, and a
common “lib” directory had to be cre-
ated that contained the shared
libraries and JARs.

• Application-specific EJBs and JAR
files were local to each application.

• By default, each application pointed
to a different schema. The properties
files had to be updated so applica-
tions shared the same database.

• Some of the HTML files and JSPs had
to be modified to provide an integrat-
ed user interface.

Figure 2 shows how the directory

structure was set up to ensure that all
common components were shared. In
Figure 2, application 1 has its own set of
classes, JARs, config files, JSPs, etc. It
also shares the common classes, JSPs,
JARs, etc., from the Common En-
vironment folder.

Each component was developed and
tested in its own environment. Once the
key features were developed, they were
integrated in a separate “integration
environment.” Once the applications
were integrated, they were promoted to
the staging environment. The defects
found in this environment were repro-
duced and analyzed in the integration
environment.

Figures 3 and 4 show the change
management steps across various envi-
ronments.

Change Management of
Shared Components

Shared components implement
functionality such as user management,
common logger, and audit trail.
Common functionality is shared across
many applications. All EJBs, property
files, JSPs, or database entities that sup-
port such common functionality have to
be carefully managed since it impacts
more than one application. Additional
coordination is necessary to ensure that
other teams can continue to be produc-
tive. The changes were completely test-
ed in the integration environment
before checking them into VSS. In other
words, the next steps were followed to
ensure the quality of the shared compo-
nents:
• Obtain the most current code base

from VSS.
• Obtain the modified shared

components from the devel-
oper’s environment and over-
write the code base from VSS.

• Compile the application
using the integrated build
script.

• If the functionality works as
expected, immediately check
the modified components
into VSS.

Change Management of the
Business Logic Layer

Sometimes changes in the EJB
layer meant changing the pre-
sentation layer. JSPs and servlets
may have to be fixed to reflect
new changes in the EJB layer.
Such changes were coordinated
by the development team and
implemented in the develop-
ment environment. Developers
working on the presentation

layer used the updated EJB JARs and
ensured that the presentation layer
worked. All the changes were then
checked in at the same time. Figure 3
shows the steps involved.

Change Management of the
Database Schema

Typically, schema changes made to
support new features are most likely to
break the system. Schema changes
made to fix defects must ensure that
existing features are not impacted.
However, they were discouraged in this
project, and were made only if they
impacted critical functionality. Change
management of schema changes is
shown in Figure 3.

Change Management of the
Presentation Layer

Figure 4 shows the change manage-
ment steps in the presentation layer. It
can be seen that some changes are
rolled forward from the development to
the staging environment and some
changes have to be rolled back from the
staging to the development environ-
ment. Since the presentation layer has
the least number of dependencies, it can
be changed easily in any environment.
During testing, it was sometimes easier
to tweak a JSP in the test environment
itself. These changes were then applied
to the source in VSS. The challenge here
was to be disciplined and roll the
changes back into the development
environment.

Tools and Processes
Various tools and processes have to

be in place to support software develop-
ment. Some of the key management
aspects that must be addressed are time,
process, version control, configuration,
and defect. Being a startup organization,
the team had to set up each and every
process and tool from the ground up.
The following are some of the criteria
used to select these tools and processes:
• Should adequately support the

requirements
• Be easy to use, configure, manage,

and measure
• Be cost effective
• Be scalable to support a growing team

for at least two years
• Have a relatively low learning curve

for the team
• Be practical to use and not create

additional work

Configuration Management
Configuration management controls

and monitors change throughout the
software development life cycle. SinceFIGURE 3 Change management across environments (business components)

31SEPTEMBER 2002

Java COM

altova
www.altova.com

Java COM

32 SEPTEMBER 2002

J 2 E E P R O J E C T S
J2

SE
H

om
e

J2
E

E
J2

M
E

we had to branch out often to support
ongoing demos, it was extremely impor-
tant for the team to follow a consistent
configuration management process.
Visual Source Safe (VSS) was used for
configuration management and version
control. Every element of the project
was under configuration management
right from the get-go, including:
• Requirements documents
• Configuration files
• External libraries
• Source code

Defect Tracking
There are several defect-tracking

tools available under public domain
that work well in small organizations. A
tool called codeCharge code generator
was used to build the bug-tracking tool.
CodeCharge generator allows a devel-
oper to quickly create a Web-based
application in a variety of languages
including ASP, ASP.NET, JSP, and
ColdFusion. It supports all standard
relational databases including MS
Access. This tool enabled us to incorpo-
rate new features without much down
time.

Build Process
Each developer set up his or her own

build environment. The solutions
ranged from using the built-in function-
ality of an IDE to using Ant and the basic
batch script. Developers were not
allowed to check in functional enhance-
ments without ensuring that the entire
application compiled and the new func-
tionality worked in the local environ-
ment. A common build script using Ant
was developed for each application.
Thus, getting the most current version

was as simple as obtaining the current
code base and building it with the Ant
scripts. The build scripts failed very
rarely since the developers validated
each and every code change.

Test and QA Process
You rarely have the luxury of a dedi-

cated QA team in a startup environ-
ment. While the development team was
busy building the new product, the
domain experts were busy creating a
functional test plan. A “war room” envi-
ronment was set up for the entire devel-
opment team for two weeks following
the integration phase. With help from
subject matter experts, two weeks were
dedicated to testing the new product.
Defects were documented and classi-
fied. Defects that prevented the execu-
tion of key functionality were classified
as “show stoppers” and fixed immedi-
ately. The remaining defects were prior-
itized and either fixed following the test
cycle or documented and scheduled for
the next release.

Challenges and Compromises
Embarking on a new J2EE project is

always challenging, especially in a small
growing environment where the success
or failure of the project depends on each
decision – from selecting the right tools
and setting up processes to making hard
decisions and managing expectations.
This project was no different. Some of the
project management challenges were:
• Requirements Management: Since

the sales team was able to provide
feedback well into the development
cycle, requirements were never really
frozen. Each new requirement was
carefully evaluated and prioritized. If

a new requirement was
deemed to be critical for the
release, it would be further
analyzed and the impact on
the schedule and design eval-
uated.

• Testing and QA: A unique
environment involving the
entire team had to be created
to test the product. The war
room environment helped the
team focus on the task at
hand and iron out the rough
edges.

• Expectation Management:
Since this was a new team and
each person brought in
unique experiences from
prior jobs, managing the
team’s expectations was a
high priority. The team had to
be reminded frequently that
the integration environment

was for integration testing, not devel-
opment, and that changing require-
ments have a huge impact on the
quality of the product, etc.

• Time to Delivery: As with most devel-
opment projects today, time-to-mar-
ket was the most critical metric for
this project. Even though it was chal-
lenging, the project was completed on
schedule by making certain compro-
mises.

• Mentoring: The project plan had to
include mentoring activities, given the
varied levels of J2EE expertise in the
development team. Since there was a
learning curve, productivity metrics
had to adjusted for the entire team.

To meet the goal of delivering a
quality product on time, several com-
promises had to be made. Several per-
formance-related issues were identi-
fied, but not resolved as this would
have pushed the project beyond the
release date. Portability was postponed
to a future release. Compromises also
had to be made when selecting tools
and processes, since the bootstrap
environment did not justifying buying
commercial tools such as Rational
Rose, ClearCase, WinRunner, and
TestDirector. In some cases, functional-
ity that should ideally be developed in
the EJB layer was developed in the
servlet layer to meet the time-to-mar-
ket pressures.

Conclusion
J2EE projects can be completed on

time by following the basic principles of
project management. They can prove to
be more challenging, as they target
enterprise applications that require
large integration efforts. Identifying
potential risks and then taking quick
actions to mitigate them keeps the proj-
ect under control. This prevents small
“fires” from destroying the entire proj-
ect. Technical issues are relatively easy
to resolve as compared to people and
process issues. It’s the responsibility of
project management to get a buy-in
from the stakeholders on the processes
and tools to be used.

It’s human nature to resist change,
especially when you don’t see value in
the process. Using best practices as a
guideline and making pragmatic deci-
sions go a long way in making any proj-
ect successful. Fortunately, J2EE is
mature enough, so you can learn from
other people’s experiences.

AUTHOR BIOS
Kunal Shah is the

director of product
management at

Controlling Factor.
He is well versed in
Java-based product

management,
ranging from small
to large enterprise

projects

Ajit Sagar is the
J2EE editor of JDJ
and the founding

editor of
XML-Journal. He is

the director of
engineering at

Controlling Factor, a
software firm in

Dallas. He is well
versed in Java,Web

services, and
enterprise

technologies.

kshah@controllingfactor.com

ajit@sys-con.comFIGURE 4 Change management across environments (presentation layer)

33SEPTEMBER 2002

Java COM

acceltree
www.acceltree.com

jasonbell@sys-con.com

According the Standish Group, 84%
of all IT-related projects are not
delivered on time or within bud-

get. Now when the world reads “IT-related
projects,” the automatic assumption is
that the IT department is to blame.

Further investigation reveals the main
reasons for failure: inadequate require-
ments and lack of client/user input. I’ve
worked both extremes: I’ve written func-
tional and technical specifications and the
client has responded (via the project man-
ager) that the specs were like “a sledge-
hammer to crack a peanut.” If this is the
client’s mentality, you’ll encounter trouble.

On the opposite side of the coin, I’ve
received specs from on high that were
completely unreadable or made no sense
at all. When it came time to deliver, the
client said, “Well, I actually meant this.”
My favorite was the client who said, “I
don’t understand what I’ve written.”

Are we programmers that unapproach-
able? Is it our armpits? No, it’s a lack of
basic communication. Managers feel they
want to try and talk “techie” to us so we
might understand what they’re saying.
What we really want is an English (or insert
your native tongue here) description of
their aim and vision and some basic
requirements. Then we can come to some
agreement on functional specifications.

What worries me is that when man-
agers of different companies talk together,
a common question will crop up: “Does
your IT department deliver on time?” The
response will usually be, “No, we leave
them to it; we dare not approach them!”
Have I hurt your feelings yet? No? Good.

Perhaps it’s time to teach. The word
teach is an interesting word. The usual dic-
tionary references are fine, but if you look
at the Hebrew definition it means, among
other things, to “shoot arrows” (Strong’s
number 03384). You need to be pretty
direct when trying to get your point across.

Not everyone is a teacher so it’s always
handy to have someone who can present
the idea quickly and concisely – your man-
agers will have more faith in you and your
team. Get to know your team, know each
member’s strengths and weaknesses. Yes,
they’re all great programmers, but who
communicates the ideas the best? Who is
the visionary? Who keeps everyone focused
on the light at the end of the tunnel?

If you don’t use a software develop-
ment methodology, you should start; it
doesn’t matter if it’s UML, Extreme
Programming, etc. You don’t have to take
the whole method as gospel, but the more
you can plan out and see the risks and
communicate those risks to manage-
ment, the better. Highlight the major
problems and sort them out straightaway.

Another thing I’ve found handy is to
deliver the project to the client frequently
throughout the project’s timeline. I started
doing this after talking to other developers.
They would create the application with lim-
ited or no functionality and keep delivering
it on a regular basis. This creates a sense of
trust with the client that something is actu-
ally happening. The client doesn’t have to
wait until the last quarter of the project to
actually see something half working.

I’ve had to look at my track record and
say, “Hey, I could have done that better.”
It’s all about personal as well as team
development. Over the years I’ve made a
mess of estimating projects – sometimes it
was due to bad requirement specs and
sometimes it was me. Our office now has a
motto – “Woolly specs = woolly deadlines.”

Feel free to let me know how you get
on. Until next month.

References
• The Standish Group: www.standish

group.com
• Strong’s Lexicon: http://bible.crosswalk

.com/Lexicons/Hebrew/

J 2 S E E D I T O R I A LO RJ
J2

SE
H

om
e

J2
E

E
J2

M
E

The 84% Rule
JASON BELL J2SE EDITOR

34 SEPTEMBER 2002

J 2 S E I N D E XX

34

38

42

36

Java COM

AUTHOR BIO
Jason Bell is a programmer and senior IT manager for a B2B Web portal in York, England. He has been involved in numerous

Web projects over the past five years, the last two of which have been servlet-based.

The 84% Rule
According the Standish

Group, 84% of all IT-related
projects are not delivered on

time or within budget. Now
when the world reads “IT-

related projects,” the auto-
matic assumption is that the

IT department is to blame.
Further investigation reveals
the main reasons for failure:

inadequate requirements and
lack of client/user input.

by Jason Bell

Combating the
‘Object Crisis’

Java’s phenomenal success
as an enabler of enterprise-

wide, Web-deployed applica-
tions has compelled count-
less organizations and indi-
viduals to seek Java profi-
ciency. Many professional

software developers schooled
only in procedural program-

ming languages are now
looking to make the transition

from procedural to OO pro-
gramming with Java.

by Jacquie Barker

Java Design
This article

explores using interfaces and
abstract classes to achieve
flexibility with a real-world

example that implements the
Data Access Object (DAO)

pattern.
by Michael Barlotta

Creating a Custom
Launcher

The most frustrat-
ing and error-prone aspect of

Java for the average user is
starting a Java program. This

article shows how you can
wipe away the whole mess

and easily write custom
launchers for your

applications.
by John Chamberlain

35SEPTEMBER 2002

Java COM

esri
www.esri.com

I N D U S T R Y C O M M E N T A R Y

Java COM

36 SEPTEMBER 2002

Java’s phenomenal success as an
enabler of enterprise-wide, Web-
deployed applications has com-

pelled countless organizations and indi-
viduals to seek Java proficiency. Many
are drawn like moths to a flame, and in
fact go “down in flames.” They’re ill-pre-
pared to harness Java’s power as an
object-oriented programming language
due to a basic lack of understanding of
object concepts.

Many professional software develop-
ers schooled only in procedural pro-
gramming languages are now looking to
make the transition from procedural to
OO programming with Java. Motivated
by career survival, they seek a “quick fix”
– a single book or course that can trans-
form them into Java-proficient software
engineers.

In addition, the relative shortage of
Java-trained professionals has led
organizations to attempt to mass-pro-
duce Java talent by retooling their in-
house programming staff in Java. Eager
to do so in the quickest way possible,
they fall prey to the notion that sending
competent programmers to Java train-
ing – especially C++ programmers, who
are presumably already proficient with
objects – will produce instant “Java
savvy.”

What these individuals and organi-
zations often don’t realize is that:

• Most Java training does only a cursory
job of explaining object concepts. After a
perfunctory lesson on what objects and
classes are, Java instructors usually dive
into the details of Java syntax without
giving participants a big-picture appre-
ciation for the nature of objects. Topics
key to harnessing the full power of an
OO language – e.g., encapsulation,
information hiding, object collabora-
tion, overriding, polymorphism – are
merely touched upon in passing, if at all.

Students go through the motions of
writing Java code “snippets” but often
come away without any knowledge of
how to structure a software application
from the ground up to make the most of
Java’s OO nature.

• Not all C++ programmers are object
savvy. Many software engineers who
adopted C++ years ago were “born-
again” C programmers who saw C++ as a
“better C.” They weren’t necessarily
compelled to learn the object paradigm
beyond a superficial level because they
were able to successfully write proce-
dural C++ code upon merely learning
C++ language syntax. (Despite many
syntactic similarities between the two
languages, Java is arguably more true to
the object paradigm – it provides fewer
“back doors” with which a programmer
can escape the rigor of objects.) Those
C++ programmers who never learned
objects properly don’t have a leg up
learning Java, but organizations unfor-
tunately assume they do.

• The prevalence of drag-and-drop Java
IDEs exacerbates the situation. While
such tools allow those without object
know-how to craft OO user interfaces,
these UIs sit on top of a non-OO infra-
structure. Like the Hollywood facade of
a town in the Old West, an application
built with such an IDE may appear to be
object-oriented. Scratch the surface,
however, and you’ll see the reality –
there is a noticeable discontinuity
between the OO front end and a decid-
edly non–OO back end. This leads to
brittle applications that are difficult to
extend and maintain.

The “object crisis” is by no means
insurmountable. By observing a few
basic guidelines for how best to retool
with objects in general and Java in par-

ticular, you can quickly be off to the
right start:
• Invest in object training before Java

training: it’s like learning how to hold
a golf club properly before strategiz-
ing how to play a particular golf
course. But choose wisely. Make sure
that the object training you select
doesn’t teach objects in isolation – it
should also illustrate how to bridge
the gap between object models and
Java code.

• Craft your own Java code using a bare-
bones IDE or simple text editor to
master the OO aspects of Java before
relying on a drag-and-drop GUI
builder to churn out code automati-
cally.

• Engage a Java-proficient object men-
tor to work with a fledgling Java team
throughout the project life cycle.

• Tackle a reasonably small project first
– don’t attempt to conquer a major
enterprise-level application. Ideally,
cut your teeth on an in-house project
versus a project-for-hire for a key
client.

The object paradigm is intuitive and
powerful…nonetheless, mastery of
objects doesn’t happen automatically by
virtue of learning Java syntax. An up-
front investment in learning objects
properly will pay for itself numerous
times over in terms of the quality, main-
tainability, and robustness of the result-
ing Java applications.

AUTHOR BIO
Jacquie Barker is a professional software engineer, author,
and adjunct faculty member at The George Washington
University. Her book, Beginning Java Objects, is focused on
conquering the object crisis by teaching fundamental object
concepts side by side with beginning Java syntax
(www.objectstart.com).

J2
SE

H
om

e
J2

E
E

J2
M

E

WRITTEN BY
JACQUIE BARKER

Combating the ‘Object Crisis’

The foundation for Java proficiency

jjbarker@objectstart.com

37SEPTEMBER 2002

Java COM

macromedia
macromedia.com

Java COM

38 SEPTEMBER 2002

Java Design

J A V A T E C H N I Q U E S

In Part 2 I’ll explore using interfaces
and abstract classes to achieve flexibility
with a real-world example that imple-
ments the Data Access Object (DAO) pat-
tern. I’ll also quickly look at the abstract
classes and interfaces in the Java arena.

Putting It to Real Use – the DAO Pattern
Data can be stored in different per-

sistent data sources. These include rela-
tional databases as well as flat files, XML
documents, LDAP, and legacy systems.
Each data source requires a different way
of getting a connection to it as well as var-
ious ways of retrieving, adding, updating,
and removing data. With the DAO pattern
you can separate the data source access
and encapsulate interaction with the
data from objects that use the data.

In any given application we may have
a defined business entity called
Customer. Rather than code all the data
access logic in the Customer object, we’d
want to separate this because the busi-
ness that needs the application may store
data for its customers in different data-
bases. Some of the data may even be in
legacy systems that require lots of code
written with a proprietary API to get the
data out. Keeping the data access logic
out of the Customer business object
makes the code cleaner and allows the
developer to focus on the business needs
instead of how to get the data.

Another practical use for the DAO
pattern would be a product company
that wants their application to work with
multiple relational databases, allowing
customers to use the DBMS of their
choice. In either case we would want to
use the DAO pattern to encapsulate data
access from the rest of our application.

We can create a flexible implementa-
tion of this pattern using an abstract
class and an interface. For example, a
company has an application that needs
to get customer data from either an
Oracle or a Microsoft SQL Server DBMS.

Because the SQL syntax for the Oracle
and the Microsoft DBMS are not com-
patible, we’ll need to write a separate
class that can access the customer data
from either database. These classes are
represented by the OracleCustomerDAO
and the MSSQLCustomerDAO. Because
the set of methods for each of these
objects is the same (get, add, update,
delete) but they don’t share any com-
mon implementation, we’ll define an
interface CustomerDAO as follows:

public interface CustomerDAO {

public CustomerDatagetCustomer

(String id);

public StringaddCustomer

(CustomerData cd);

public booleanupdateCustomer

(CustomerData cd);

public boolean deleteCustomer(String

id);

}

The OracleCustomerDAO and the
MSSQLCustomerDAO would implement
each method using the specific SQL syntax
of the DBMS to perform the operations.

The CustomerData object encapsu-
lates all the data about our Customer.
This class typically uses Java fields to
hold the data and has no methods (other
than accessor get/set methods). This is
an example of the Value Object pattern.

Next we need to consider how to allow
the application to get the proper
CustomerDAO implementation without
each class that needs customer data try-
ing to determine which database is in use.
Since this is a common operation, we can
place that logic in a separate class that will
then create the proper CustomerDAO
object. This is called a factory.

Since the Oracle and Microsoft data-
bases require different classes for each
business entity we want to access (e.g.,
Customer, Order, etc.), we’ll create a sep-
arate factory for each. The Oracle-

DAOFactory class will have a getCus-
tomerDAO method on it that will return a
copy of the OracleCustomerDAO object.

public class OracleDAOFactory extends

DAOFactory {

public CustomerDAO getCustomerDAO() {

return new OracleCustomerDAO();

}

…

}

The MSSQLDAOFactory has a similar
method. Both implementations of the
method return an object reference of the
type CustomerDAO. This allows the
business object, e.g., CustomerBean, to
use the object to get customer data
through the interface without caring
which database the data is coming from.

The last thing we need to do is hide
the Factory implementation from the
business object. We can do this using a
generic abstract class, DAOFactory. This
class can implement the code to deter-
mine which data source to use and be
the superclass for the OracleDAO-
Factory and the MSSQLDAOFactory. The
code to determine which data source is
in use is not shown but we could find
out by reading in data from a Java prop-
erties file or an XML file, or looking it up
in a JNDI Naming Service.

The abstract class, DAOFactory, can
also define an abstract method, get-
DAOFactory, that’s responsible for return-
ing the correct factory object. It’s the job
of the subclass factory object to create the
correct CustomerDAO for the given data
source, as we saw earlier.

public abstract class DAOFactory {

// abstract getXXXDAO methods

public abstract CustomerDAO

getCustomerDAO();

// getDAOFactory

public static DAOFactory

WRITTEN BY
MICHAEL BARLOTTA

In Part 1 (JDJ, Vol. 7, issue 6) we looked at the Java class as a
type. Although it’s easy to think of the class name of our Java class
as its type, the interfaces it implements and the superclasses it
extends can also be viewed as its types.

Using interfaces and abstract classes to
create flexible code

J2
SE

H
om

e
J2

E
E

J2
M

E

Part 2 of 2

39SEPTEMBER 2002

Java COM

capella
www.capella.com

40 SEPTEMBER 2002

J A V A T E C H N I Q U E S

getDAOFactory() {

String factoryClass = "":

// determine which factory class

to use

…

Class _class = Class. forName

(factoryClass);

Object _object = _class.

newInstance();

if (_object instanceof

DAOFactory) {

factoryInstance = (DAOFactory)

_object;

}

else {

// throw Exception

}

// Need to handle the

// ClassNotFoundException

// InstantiationException

// IllegalAccessException

return factoryInstance;

}

}

Our business object Customer-
Bean can now use either an Oracle
or a Microsoft database to get, add,
update, or delete a customer. The
following code shows how a busi-
ness object might use these objects
to delete a customer:

String customer_id = "100";

DAOFactory df =

DAOFactory.getDAOFactory();

CustomerDAO cust =

df.getCustomerDAO();

cust.deleteCustomer(customer_id);

In this example we’re writing to a
type instead of a specific implemen-
tation. The code doesn’t depend on
the database that’s in use and the
application can quickly be changed
to use new databases, such as
Sybase. A new CustomerDAO class
will need to be implemented using
the Sybase SQL syntax to access cus-
tomer data, and a Sybase version of
the DAOFactory will need to be writ-
ten; however, all the business objects
that use the customer data won’t
require any changes.

Wrapping It Up
We’ve looked at how to write code

to a type rather than to an implemen-
tation and saw how this can create a
tremendous amount of flexibility in

our applications. This is because the
type determines what the object can
do, and the implementation deter-
mines how the object does it.

The last thing to consider is how
to determine when to use an abstract
class and when to use an interface.
Interfaces allow classes that don’t
share any implementation hierarchy
(inheritance) to be grouped together
and still share a type. However, when
we use an interface, we don’t get any
implementation reuse as we do in
the CustomerDAO interface.

When we use the abstract class as
a supertype we get implementation
reuse that doesn’t need to be duplicat-
ed across multiple classes. For exam-
ple, the DAOFactory can share the
implementation code that deter-
mines which database to use. Using
an abstract class, however, locks our
class into an inheritance hierarchy
and prevents other classes that
already extend a particular class from
sharing the type. It also prevents class-
es that extend the abstract class from
being able to extend other classes.

This was not a major factor in the
DAO pattern implementation but is
usually a concern in other designs. A
final consideration is that adding
additional methods to the interface
breaks all the classes that implement
the interface, because each class is
required to implement the new
method, while adding methods to an
abstract class can be done without
affecting any subclasses.

References
• Gosling, J., Joy, B., and Steele, G.

(1996). The Java Language Speci-
fication. Addison-Wesley.

• Flanagan, D. (2002). Java in a
Nutshell. O’Reilly.

• Alur, D., Crupi, J., and Malks, D.
(2001). Core J2EE Patterns: Best
Practices and Design Strategies.
Prentice Hall PTR.

• J2EE BluePrints: http://java.sun
.com/blueprints/

• (Image and code) “Reveal the
magic behind subtype polymor-
phism”: www.javaworld.com
/javaworld/jw-04-2001/jw-0413-
polymorph.html

• “A primordial interface?”:
www.javaworld.com/javaworld/
jw-03-2001/jw-0309-primor-
dial.html

• “Thanks type and gentle class”:
www.javaworld.com/javaworld/
jw-01-2001/jw-0119-type.html

J2
SE

H
om

e
J2

E
E

J2
M

E

AUTHOR BIO
Michael Barlotta is

the director of
technology at AEGIS

Inc. (www.AEGIS.net).
He’s a Sun Certified

Java programmer and
is a recognized as an
expert on Jaguar CTS
(EAServer), mentoring
clients and speaking

at conferences on the
topic. Mike is the
author of several

books including
Taming Jaguar and

Jaguar Development
with PowerBuilder 7

(both by Manning
Publications). mike.barlotta@aegis.net

PUBLISHER, PRESIDENT,AND CEO
FUAT A. KIRCAALI fuat@sys-con.com

COO/CFO
MARK HARABEDIAN mark@sys-con.com

VICE PRESIDENT, BUSINESS DEVELOPMENT
GRISHA DAVIDA grisha@sys-con.com

A D V E R T I S I N G
SENIOR VICE PRESIDENT, SALES AND MARKETING

CARMEN GONZALEZ carmen@sys-con.com
VICE PRESIDENT, SALES AND MARKETING

MILES SILVERMAN miles@sys-con.com
ADVERTISING SALES DIRECTOR

ROBYN FORMA roybn@sys-con.com
ADVERTISING ACCOUNT MANAGER

MEGAN RING megan@sys-con.com
ASSOCIATE SALES MANAGERS

CARRIE GEBERT carrieg@sys-con.com
KRISTIN KUHNLE kristen@sys-con.com
ALISA CATALANO alisa@sys-con.com
LEAH HITTMAN leah@sys-con.com

E D I T O R I A L
EXECUTIVE EDITOR

NANCY VALENTINE nancy@sys-con.com
EDITOR

M’LOU PINKHAM mpinkham@sys-con.com
MANAGING EDITOR

CHERYL VAN SISE cheryl@sys-con.com
ASSOCIATE EDITORS

JAMIE MATUSOW jamie@sys-con.com
GAIL SCHULTZ gail@sys-con.com
JEAN CASSIDY jean@sys-con.com

ASSISTANT EDITOR
JENNIFER STILLEY jennifier@sys-con.com

ONLINE EDITOR
LIN GOETZ lin@sys-con.com

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN
JIM MORGAN jim@sys-con.com

LEAD DESIGNER
LOUIS F. CUFFARI louis@sys-con.com

ART DIRECTOR
ALEX BOTERO alex@sys-con.com

ASSOCIATE ART DIRECTORS
CATHRYN BURAK cathyb@sys-con.com

RICHARD SILVERBERG richards@sys-con.com
AARATHI VENKATARAMAN aarathi@sys-con.com

ASSISTANT ART DIRECTOR
TAMI BEATTY tami@sys-con.com

W E B S E R V I C E S
WEBMASTER

ROBERT DIAMOND robert@sys-con.com
WEB DESIGNERS

STEPHEN KILMURRAY stephen@sys-con.com
CHRISTOPHER CROCE chris@sys-con.com
CATALIN STANCESCU catalin@sys-con.com

A C C O U N T I N G
ASSISTANT CONTROLLER

JUDITH CALNAN judith@sys-con.com
ACCOUNTS RECEIVABLE/COLLECTIONS SUPERVISOR
KERRI VON ACHEN kerri@sys-con.com

ACCOUNTS PAYABLE
JOAN LAROSE joan@sys-con.com

ACCOUNTING CLERK
BETTY WHITE betty@sys-con.com

S Y S - C O N E V E N T S
VICE PRESIDENT, SYS-CON EVENTS

CATHY WALTERS cathyw@sys-con.com
CONFERENCE MANAGER

MICHAEL LYNCH mike@sys-con.com
SALES EXECUTIVES, EXHIBITS

MICHAEL PESICK michael@sys-con.com
RICHARD ANDERSON richard@sys-con.com

C U S T O M E R R E L A T I O N S
CUSTOMER SERVICE MANAGER

ANTHONY D. SPITZER tony@sys-con.com
CUSTOMER SERVICE REPRESENTATIVE

MARGIE DOWNS margie@sys-con.com
JDJ STORE MANAGER

RACHEL MCGOURAN rachel@sys-con.com

Java COM

41SEPTEMBER 2002

Java COM

ibm
www.ibm.com

Java COM

42 SEPTEMBER 2002

The most frustrating and error-prone
aspect of Java for the average user is start-
ing a Java program. The monumental con-
fusion of batch files, scripts, and com-
mand-line cut-and-paste that’s necessary
to start a Java program using the default
launcher is an ongoing problem area even
for veteran developers.

This article shows how you can wipe
away the whole mess and easily write cus-
tom launchers for your applications. A
custom launcher makes startup as simple
as point-and-click and can be the differ-
ence between a program appearing pro-

fessional or appearing unusable. The specifics on making
launchers for all the major platforms are also covered.

A long-time barrier to user acceptance of Java has been the
confusing and unfriendly default launcher. It requires long
strings of command-line arguments before it will start a Java
program. Both users and software developers constantly
receive the java.lang.NoClassDefFound exception and other
errors. Sun’s noble response to this problem is to provide a
public API, the invocation interface, that can be used to start
the JVM and accompanying Java program. Although a few
commercial applications use this API, it’s woefully underuti-
lized overall. I’ll show how easy it is to create a custom launch-
er and provide templates that you can use to automate start-

up of your Java programs. There’s even a generic configurable
launcher that’s ready to run, no compilation necessary.

I focus on the three major desktop platforms: Windows,
Mac OS, and Unix. Each platform has its own quirks, but using
a custom launcher brings benefits that are common to all
three, such as:
• Program startup is easier and more reliable.
• Software identification and branding are better.
• Greater customization and VM control is possible.

Given that a commercial-quality launcher requires only
about 200 lines of code and templates are provided, there’s no
reason you can’t get started today.

How Java Programs Are Launched
The complexity of launching a Java program is largely due

to Java being an interpreted language. This makes startup and
shutdown a multistep procedure (see Figure 1).

As the figure suggests, any native executable can start a
Java program. A Java launcher is a native executable dedicat-
ed solely to starting Java programs. The most commonly used
launchers are the ones Sun supplies in the /bin directory of
the Java runtime distribution. In the case of the Windows plat-
form, these programs are “java.exe” and “javaw.exe”. The for-
mer opens two windows: a console that receives
System.out/err and output from the launcher and the Java
window itself. The latter, a windowless launcher, opens only

J2
SE

H
om

e
J2

E
E

J2
M

E

43SEPTEMBER 2002

Java COM

parasoft
www.parasoft.com

Java COM

the Java window. On J2SE/EE platforms the virtual machine is
implemented as a dynamic link library that’s also in the /bin
directory. On Windows it’s called “java.dll”, on Unix “java.so”.
Loading the VM equates to loading this DLL.

Users specify options to the VM in two ways. They can put
the options on the command line to the launcher and/or
define environment variables with the desired settings. One of
the options, the startup class, can only be specified on the
command line. This bifurcation of the execution configuration
is a common source of confusion that can be eliminated by
using a custom launcher.

When the virtual machine has finished running the main()
method of the startup class, the launcher calls destroy() on the
VM to free any detachable resources and then exits. Note that
there’s no way to unload a VM once it’s been loaded. This
makes no difference to a launcher since it will exit as soon as

the Java program is done; however, for a native application
that embeds a VM, such as a browser, it means there’s a per-
manent commitment of memory that can’t be reclaimed.

Nuances of Creating a Windows Launcher
Once you understand the Java life cycle you’re ready to

code a launcher. Be aware that some of the generic code
examples floating around on the Web and in books, such as
The Java Native Interface by Sheng Liang (see Resources),
won’t work on a platform such as Windows without changes.
The working example in C++ for Windows illustrates some of
the nuances (see Listing 1).

First, use a WinMain() entry point as you would for most
Windows applications. Also, you need to prototype
CreateJavaVM() to use the stdcall calling convention by type-

def'ing it as a pointer to CALLBACK. These are
Windows-specific requirements. Another platform-
specific nuance is loading the VM DLL. The most
reliable way to load the VM is by an explicit call to
LoadLibrary:

HINSTANCE hJVM = LoadLibrary(sJVMpath.c_str());

First determine the path of the JVM’s DLL and
then explicitly load it. This differs from the example
in The Java Native Interface, which uses implicit
loading. The problem with implicit loading is that it
makes assumptions about the location of the DLL
that might not be true for all environments. By
explicitly loading the JVM you can place it anywhere
you like in your distribution and verify that it’s real-
ly there before attempting to load it. Once you load
the JVM, obtain a function pointer to
CreateJavaVM() by using the kernel call
GetProcAddress() and then calling that pointer to
start the VM.

The next nuance in the listing is that the sepa-
rators used in the startup class identifier are slashes,
not dots. So in the listing the startup class is “java-
bunny/JavaBunny”, not “javabunny.JavaBunny”.
This is because FindClass() is a virtual machine call
and the virtual machine internally uses the slash as
its package separator. By the way, the example hard
codes the startup class (and other values). This may
be appropriate for a shrink-wrapped product
release, but in a development environment you’ll
probably want to pull this value from a configura-
tion file. Later, I’ll describe a more generic template
that does this.

The example determines the startup method
ID by using the JNI call GetStaticMethodID(). This
call requires the method name (“main”) and the
type descriptor “([Ljava/lang/String;)V”. This type
descriptor means the method takes an array of
strings as an argument and has a return type of
void. For more information on type descriptors see
The Java Virtual Machine Specification (see
Resources). Notice that when you create a custom
launcher you’re not restricted to using a static void

SEPTEMBER 200244

FIGURE 1 The Java life cycle

“Once you understand
the Java life cycle
you’re ready to code a launcher”

J2
SE

H
om

e
J2

E
E

J2
M

E

45SEPTEMBER 2002

Java COM

engenuity
www.engenuity.com

Java COM

method called “main”. You can start with any method at all,
even an instance method or constructor.

The last tricky point of a launcher is hidden behind the fol-
lowing line at the end of the listing:

jvm->DestroyJavaVM();

This statement looks like optional cleanup added as an
afterthought to program execution. Not true! If the Java pro-
gram is multithreaded, it will still be executing during this
call. For example, if a Swing program runs and its main
method exits, this line will execute and block until all non-
daemon threads have completed. This blocking behavior
makes it critical that you include this line. If you omit it, the
program will exit as soon as the main thread terminates, even
if other threads (like the event loop of your GUI) are still run-
ning.

Launcher Configuration
In Listing 1 I hard code some

of the key parameters such as
the startup class. Notice, how-

ever, that none of the paths are

hard coded. This is part of the beauty of a custom launcher
– all the paths are relative, so you can drag the application
folder to another drive (or computer) and it will run flaw-
lessly. Try doing that with a batch file. Listing 1 always uses
a JRE located in a subfolder of the application folder. By dis-
tributing a JRE with your application, like this, you guaran-
tee runtime compatibility and make your application total-
ly independent of the user’s environment. The extra disk
space used by adding yet another JRE to the user’s disk drive
is meaningless compared to the increased reliability. When
writing your own launchers you may want to use different
directory layouts than the one in Listing 1. As long as all the
paths are relative to the native executable’s location, you’re
fine.

Resource paths can be made flexible enough that they don’t
need to be configured, but some values will need to be config-
urable outside of the launcher, especially in an oft-changing
development environment. These include:

• The startup class
• The class path
• Special VM parameters such as “-verbose”

The best way to specify these parameters is to load them
from a configuration file located in the same directory as the
launcher executable. (The source code for this article can be
downloaded from www.sys-con.com/java/sourcec.cfm and
includes code for a launcher that configures itself this way.) By
using a resource editor to replace the icons in this launcher’s
binary with your own, you can use it repeatedly for all your
applications without ever needing to compile.

Mac Launchers
In the Macintosh universe, life is much easier. Java devel-

opment on the fruit boxes is divided into two scenarios: OS X
and pre-OS X (“Classic Mac OS”). OS X has strong Java support
compared to Classic Mac. For example, Classic Mac supports
only 1.1.8, so for many developers it will be irrelevant. Swing
support on Classic Mac is available if the user downloads and
installs MRJ 2.2.5, but for anything more recent like J2EE, for-
get about it.

If these restrictions don’t faze you, create a native launcher
on Classic Mac by using Apple’s old native toolkit called JDirect
(don’t confuse this with the obsolete “J/Direct” that worked
with Microsoft’s J++). A much easier way to create a clickable
icon, however, is to use a special Apple tool called “JBindery”.
This tool creates a distribution that so closely resembles a
native application that writing a native launcher is unneces-
sary. You can completely configure your distribution package
using JBindery, including defining security settings and the
appearance of the Java window. When you’re done, use ResEdit
to add a custom icon to the package and it’s ready to run.
Apple considers Mac Classic, JBindery, and this whole
methodology obsolete, but if you want to support the many
users who are sticking with OS 9.1/2, it’s your best option.

The new Mac world is all OS X. In OS X the application layer
is called “Cocoa” and you access it with Objective-C. Is that
retro or what? Despite how weird it sounds, Java support is
excellent because an interface called the “Java Bridge” wraps
the Java Native Interface (including the invocation interface)

and makes a seamless connection between your native code
and Java code.

As with the Classic OS, writing a native launcher is unnec-
essary, since Apple has provided a great bundling tool,
MRJAppBuilder. If your Objective-C skills are a little rusty and
you’re working solely in Java, the best approach is to use
MRJAppBuilder. Apple has designed this bundler especially for
packaging Java applications. Note that the bundling frame-
work the tool uses is the standard way to deploy all Cocoa
applications, not just Java applications. This enlightened
approach to application distribution means that on OS X, a
bundled Java application is externally indistinguishable from
an Objective-C application and behaves in all ways like a
native executable.

The powerful capabilities of the bundlers (JBindery for Mac
Classic and MRJAppBuilder for OS X) eliminate the need for a cus-
tom launcher on the Macintosh unless you’re doing something
offbeat such as starting from an instance method. If you really

46 SEPTEMBER 2002

J2
SE

H
om

e
J2

E
E

J2
M

E
A FEW WORDS ON JAVA WEB START

Java Web Start is an attempt by Sun to ease application deployment
and execution. After installing Web Start on your system, you can click a link
in a Web page to download and launch a Java application. Once it’s down-
loaded, you can use Java Web Start’s “Application Manager” at any time to
execute the application.

One problem with Web Start is that you have no control over the Web
Start interfaces, which have Sun all over them, so whatever product brand-
ing you might have gets stuck behind Sun’s style and message. Along the
same lines, your application icon is not native and is accessible only from
inside the Application Manager, another Sun production. Also, your applica-
tion does not have full functionality because it operates in a security sand-
box similar to that of an applet. On top of this, JWS has had some stability
problems.

Overall, Java Web Start has some interesting and attractive uses, but
it’s not a replacement for a custom launcher.

“As long as all the paths
are relative to the native
executable’s location, you’re fine”

47SEPTEMBER 2002

Java COM

jinfonet
www.jinfonet.com

need to go native on the Macintosh, the article’s
download package has some code examples that will
get you started. Otherwise, stick with the bundlers
and you can sit back and laugh at the PC program-
mers while they fiddle endlessly with batch files.

Unix Launchers
Unix (or Linux) is the inverse of OS X – it has no

explicit support for Java or even for native appli-
cation packaging. For example, on Unix desktops
the icons live separately from their applications
and the relationships between them are managed
by configuration files or scripts. Issues like com-
piling icon resources into the launcher binary
don’t exist under Unix. This means an easy and
reliable startup mechanism is more a function of
your installation script than anything else.

Even so, a custom launcher still has many ben-
efits under Unix. For example, in a process listing,
the Java command line is usually so long it gets
truncated, and on a server machine running multi-
ple VMs it can be a pain to identify which process is
which. You can create a custom launcher that sim-
plifies and shortens these startup commands and
thus make the process listing more meaningful.

One of the advantages of Unix’s simplicity is
that its launcher code is the easiest of all the plat-
forms. The basic Unix launcher is the same as the
Windows example shown in Listing 1 without the
Windows-specific type conversions and Windows
configuration issues (see the download package
for an example). Another advantage is that a Unix
launcher will generally work in any Unix environ-
ment as long as it’s recompiled – once again,
something that the installation script manages.

The disadvantage of this simplicity as com-
pared to other OSs is that you are more or less
obliged to use scripts of some sort even if you do
implement a custom launcher. Good thing Unix
has such great scripting capabilities.

Conclusion
By mastering the art of creating custom

launchers for your Java applications, you can
ramp up their convenience, professionalism, and
reliability. The ease of creating launchers along
with the use of configuration files makes them
ideal for use in development environments as well
as in release distributions. Do yourself a favor:
learn to code a launcher and say goodbye to
java.lang.NoClassDefFound.

Resources
• Liang, S. (1999). The Java Native Interface:

Programmer’s Guide and Specification.
Addison-Wesley.

• Lindholm, T., and Yellin, F. (1999). The Java
Virtual Machine Specification. Addison-Wesley.

AUTHOR BIO
John Chamberlain is a consultant in the Boston area. He holds a
master’s degree in computer science, is a frequent contributor to

technical journals, and has been a speaker at
JavaOne. (http://johnchmberlain.com)

48 SEPTEMBER 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

#include <windows.h>
#include <jni.h>
#include <string>
using namespace std;

void vShowError(string sErrorMessage);
void vShowLastError(string sErrorMessage);
void vDestroyVM(JNIEnv *env, JavaVM *jvm);
void vAddOption(string& sName);

JavaVMOption* vm_options;
int mctOptions = 0;
int mctOptionCapacity = 0;

boolean GetApplicationHome(char *buf, jint sz);

typedef jint (CALLBACK *CreateJavaVM)(JavaVM
**pvm, JNIEnv **penv, void *args);

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance, PSTR szCmdLine,
int iCmdShow) {

JNIEnv *env;
JavaVM *jvm;
jint jintVMStartupReturnValue;
jclass jclassStartup;
jmethodID midStartup;

// Path Determination

// --- application home
char home[2000];
if (!GetApplicationHome(home, sizeof(home))) {

vShowError("Unable to determine \
application home.");

return 0;
}
string sAppHome(home);
string sOption_AppHome = "-Dapplication.home="

+ sAppHome;

string sJREPath = sAppHome + "\\jre";

// --- VM Path
string sRuntimePath = sJREPath +

"\\bin\\classic\\"; // must contain jvm.dll
string sJVMpath = sRuntimePath + "jvm.dll";

// --- boot path
string sBootPath = sJREPath + "\\lib";
string sOption_BootPath =

"-Dsun.boot.class.path=" + sBootPath;

// --- class path
string sClassPath = sAppHome + "\\classes";
string sOption_ClassPath =

"-Djava.class.path=" + sClassPath;

// setup VM options
// vAddOption(string("-verbose"));
vAddOption(sOption_ClassPath);
vAddOption(sOption_AppHome);

// initialize args
JavaVMInitArgs vm_args;
vm_args.version = 0x00010002;
vm_args.options = vm_options;
vm_args.nOptions = mctOptions;
vm_args.ignoreUnrecognized = JNI_TRUE;

// load jvm library
HINSTANCE hJVM = LoadLibrary(sJVMpath.c_str());
if(hJVM == NULL){

vShowLastError("Failed to load JVM from "
+ sJVMpath);

return 0;
}

// try to start 1.2/3/4 VM
// uses handle above to locate entry point
CreateJavaVM lpfnCreateJavaVM = (CreateJavaVM)

GetProcAddress(hJVM, "JNI_CreateJavaVM");
jintVMStartupReturnValue = (*lpfnCreateJavaVM)

(&jvm, &env, &vm_args);

// test for success
if (jintVMStartupReturnValue < 0) {

string sErrorMessage = "Unable to create VM.";
vShowError(sErrorMessage);
vDestroyVM(env, jvm);
return 0;

}

// find startup class
string sStartupClass = "javabunny/JavaBunny";
// notice dots are translated to slashes
jclassStartup =

env->FindClass(sStartupClass.c_str());
if (jclassStartup == NULL) {

string sErrorMessage =
"Unable to find startup class [" +
sStartupClass + "]";

vShowError(sErrorMessage);
vDestroyVM(env, jvm);
return 0;

}

// find startup method
string sStartupMethod_Identifier = "main";
string sStartupMethod_TypeDescriptor =

"([Ljava/lang/String;)V";
midStartup =

env->GetStaticMethodID(jclassStartup,
sStartupMethod_Identifier.c_str(),

Listing 1: Typical Windows launcher for a 1.2 or later VM

Java COM

jcpublic@attbi.com

49SEPTEMBER 2002

Java COM

nsoftware
www.nsoftware.com

Java COM

50 SEPTEMBER 2002

sStartupMethod_TypeDescriptor.c_str());
if (midStartup == NULL) {

string sErrorMessage =
"Unable to find startup method ["
+ sStartupClass + "."
+ sStartupMethod_Identifier
+ "] with type descriptor [" +
sStartupMethod_TypeDescriptor + "]";
vShowError(sErrorMessage);
vDestroyVM(env, jvm);
return 0;

}

// create array of args to startup method
jstring jstringExampleArg;
jclass jclassString;
jobjectArray jobjectArray_args;
jstringExampleArg =

env->NewStringUTF("example string");
if (jstringExampleArg == NULL){

vDestroyVM(env, jvm);
return 0;

}
jclassString =

env->FindClass("java/lang/String");
jobjectArray_args =

env->NewObjectArray(1, jclassString,
jstringExampleArg);

if (jobjectArray_args == NULL){
vDestroyVM(env, jvm);

return 0;
}

// call the startup method -
// this starts the Java program
env->CallStaticVoidMethod(jclassStartup,

midStartup, jobjectArray_args);

// attempt to detach main thread before exiting
if (jvm->DetachCurrentThread() != 0) {

vShowError("Could not detach main thread.\n");
}

// this call will hang as long as there are
// non-daemon threads remaining
jvm->DestroyJavaVM();

return 0;

}

void vDestroyVM(JNIEnv *env, JavaVM *jvm)
{

if (env->ExceptionOccurred()) {
env->ExceptionDescribe();

}
jvm->DestroyJavaVM();

}

void vShowError(string sError) {

MessageBox(NULL, sError.c_str(),
"Model App Error", MB_OK);

}

/* Shows an error message in an OK box with the
system GetLastError appended in brackets */

void vShowLastError(string sLocalError) {
LPVOID lpSystemMsgBuf;
FormatMessage(

FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,

NULL,
GetLastError(),

MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
(LPTSTR) &lpSystemMsgBuf, 0, NULL);
string sSystemError =

string((LPTSTR)lpSystemMsgBuf);
vShowError(sLocalError +

" [" + sSystemError + "]");
}

void vAddOption(string& sValue) {
mctOptions++;
if (mctOptions >= mctOptionCapacity) {

if (mctOptionCapacity == 0) {
mctOptionCapacity = 3;
vm_options =

(JavaVMOption*)malloc(mctOptionCapacity *
sizeof(JavaVMOption));

} else {
JavaVMOption *tmp;
mctOptionCapacity *= 2;
tmp =

(JavaVMOption*)malloc(mctOptionCapacity *
sizeof(JavaVMOption));

memcpy(tmp, vm_options, (mctOptions-1) *
sizeof(JavaVMOption));

free(vm_options);
vm_options = tmp;

}
}
vm_options[mctOptions-1].optionString =
(char*)sValue.c_str();

}

/* If buffer is "c:\app\bin\java",
* then put "c:\app" into buf. */

jboolean GetApplicationHome(char *buf, jint sz) {
char *cp;
GetModuleFileName(0, buf, sz);
*strrchr(buf, '\\') = '\0';
if ((cp = strrchr(buf, '\\')) == 0) {

// This happens if the application is in a
// drive root, and there is no bin directory.

buf[0] = '\0';
return JNI_FALSE;

}
return JNI_TRUE;

}

J2
SE

H
om

e
J2

E
E

J2
M

E

int
www.int.com

51SEPTEMBER 2002

Java COM

actuate
www.actuate.com

52 SEPTEMBER 2002

jasonbriggs@sys-con.com

J 2 M E E D I T O R I A LO R

The Sky Is Falling
JASON R. BRIGGS J2ME EDITOR

H
om

e
J2

E
E

J2
SE

J2
M

E

J

J 2 M E I N D E X

Apparently it hasn’t been a good
quarter for many PDA makers.
Shipments were down from the

same period last year so, of course, doom
and gloom are predicted by all and sundry.
Actually I’m exaggerating; one of the
reports I read was fairly evenhanded in its
approach – another was about as subdued
as Chicken Little.

Interesting timing, then, for aJile
Systems to announce a new 100% Java
“proof-of-concept” PDA that utilizes their
aJ-100 processor. The press release is typi-
cally effusive in the way that only press
releases can be:

The result is a 10X performance enhance-
ment that delivers full-motion, 16-bit color
animation on the wireless mobile device’s
320x240 QVGA display – performance that
rivals the Java execution of a desktop PC...

However, perhaps this isn’t just interest-
ing timing on aJile’s part – perhaps it shows
a little strategic forethought. There’s a fairly
well-known piece of “market wisdom” that
the best time to invest in R&D is in a down-
turn, so your company is ready for the
inevitable upward swing in the market.

Maybe the same is also true for garner-
ing interest in a product like aJile’s PDA ref-
erence platform – the best time to do it is
when everyone is moaning and groaning
that the sky is falling and it’s the end of the
(PDA) world.

Of course, in the case of this particular
Java PDA, there are bound to be arguments
over the relative merits of Java-on-the-
processor, as opposed to Java coproces-
sors, as opposed to Monty-style VMs, etc.,
etc., as the best way to go. However, I’m a
firm believer in “the more the merrier.” It
seems to me that it doesn’t matter in the
long run which approach you use to run
your Java code – as long as you’re running
Java (a standing-on-the-fence attitude
which I expect will win me no fans).

I’m keen to see if the 10x performance
enhancement, claimed by aJile, actually
carries through if/when a manufacturer
licenses the technology and builds a prod-
uct on the back of it. (Although, consider-
ing the fact that Sharp in NZ still has no
plans to distribute the Zaurus over here, it’s
entirely likely that by the time I see an actu-
al product based on aJile’s design in New
Zealand, I’ll be too old and senile to care.)

I’ve recently noticed that there have
been a number of J2ME specification
requests added this year, including:
• JSR 169: JDBC optional package for

CDC/foundation profile
• JSR 172: J2ME Web services specifica-

tion
• JSR 177: Security and trust services API

for J2ME
• JSR 179: Location API for J2ME
• JSR 180: SIP API for J2ME
• JSR 184: Mobile 3D graphics API for

J2ME
• JSR 190: Event-tracking API for J2ME

It’s an impressive group. I also noticed
that there was one rejection in the newly pro-
posed J2ME APIs: the mobile game API.
Considering that some of the technology a
mobile game API could provide will be cov-
ered by a number of other JSRs already in
development, this fills me with a little more
confidence that the JCP is not accepting every
proposal that comes in as a matter of course.

While all these APIs aren’t necessarily tar-
geted at the same group of devices, I do have
one worry that diversification of J2ME APIs
will potentially make life rather difficult in
the future. Not just for developers, who have
to navigate a virtual minefield of JSRs, but for
the end users: do you buy phone A, which
supports mobile media; phone B, which sup-
ports mobile 3D; or phone C, which supports
both but is twice as expensive? I predict that
OTA (over-the-air) download will be an inter-
esting problem in compatibility checking in
the not-too-distant future.

AUTHOR BIO
Jason R. Briggs is a Java analyst programmer and – sometimes – architect. He’s been officially

developing in Java for almost four years, “unofficially for five.”

Java COM

52

54

60

The Sky Is Falling
Apparently it hasn’t

been a good quarter for many
PDA makers. Interesting timing,

then, for aJile Systems to
announce a new 100% Java
“proof-of-concept” PDA that

utilizes their aJ-100 processor.
by Jason R. Briggs

Wireless J2ME
Applications with Java

and Bluetooth
This article, the second

installment in a two-part series
on Java and Bluetooth, dis-

cusses the following basic con-
cepts of a Bluetooth application

(Java or otherwise): device
management, device discovery,
service discovery, service reg-
istration, and communication.

by Bruce Hopkins

Whole House Audio from
the Palm of Your Hand

In Part 1 I devel-
oped an MP3 player in Java

and controlled it from a wire-
less handheld device using a

PersonalJava app. Now I need
to address the combinations

you can get when listening to
your entire music collection at
random and focus on the net-

working side of things.
by Bill Ray

53SEPTEMBER 2002

qualcomm
www.qualcom.com

Java COM

Java COM

54 SEPTEMBER 2002

Wireless J2ME Applications
with Java and Bluetooth

J A V A & B L U E T O O T H

Let’s recap. The basic concepts of any
Bluetooth application (Java or other-
wise) consist of the following compo-
nents:
• Stack initialization
• Device management
• Device discovery
• Service discovery
• Service registration
• Communication

We covered stack initialization last
month, so let’s proceed!

Device Management
LocalDevice and RemoteDevice are the

two main classes in the Java Bluetooth
Specification that let you perform device
management. These classes allow you to
request some statistical information about
your Bluetooth device (LocalDevice) as well
as some information about the devices in
the area (RemoteDevice). The static
method LocalDevice.getLocalDevice()
returns an instantiated LocalDevice object
for you to use. To get the unique address of
your Bluetooth radio, call getBlue-
toothAddress() on your local device object.
The Bluetooth address serves the same
purpose as the MAC address on the net-
work card of your computer; every
Bluetooth device has a unique address. If
you want other Bluetooth devices in the
area to find you, call the setDiscoverable()
method in LocalDevice object.

That’s about all it takes to perform
device management with the Java
Bluetooth Specification APIs. Now, let’s look
at the concept that allows you to discover
other Bluetooth devices: device discovery.

Device Discovery
Your Bluetooth device doesn’t know

what other Bluetooth devices are in the
area. Perhaps there are laptops, desk-
tops, printers, mobile phones, or PDAs
nearby. Who knows? The possibilities are

endless. To find out, your Bluetooth
device uses Device Discovery classes
that are provided in the Java Bluetooth
API to see what else is out there.

The two classes required for your
Bluetooth device to discover remote
Bluetooth devices in the area are
DiscoveryAgent and DiscoveryListener.

After getting a LocalDevice object,
instantiate a DiscoveryAgent by calling
LocalDevice.getDiscoveryAgent().

LocalDevice localdevice =

LocalDevice.getLocalDevice();

DiscoveryAgent discoveryagent =

localdevice.getDiscoveryAgent();

The are multiple ways to discover
remote Bluetooth devices, but I’ll discuss
one particular method. First, your object
must implement the Discovery-
Listener interface. This interface works like
any listener, so it’ll notify you when an event
occurs. In this case, you’ll be notified when
Bluetooth devices are in the area. To start
the discovery process, call the startInquiry()
method on your DiscoveryAgent. This
method is nonblocking, so you’re free to do
other things while you wait for other
Bluetooth devices to be found.

When a Bluetooth device is found,
the JVM calls the deviceDiscovered()
method of the class that implemented
the DiscoveryListener interface. This
method passes you a RemoteDevice
object that represents the device discov-
ered by the inquiry.

Service Discovery
Now that you know how to find other

Bluetooth devices, it would be nice to
see what services they offer. Of course, if
the RemoteDevice is a printer, you know
it can offer a printing service. But what if
the RemoteDevice is a computer? Would
it readily come to mind that you can also
print to a printer server?

That’s where service discovery comes
in. You can never be sure what services a
RemoteDevice may offer, so service dis-
covery helps you find out.

Service discovery is just like device
discovery – you use the DiscoveryAgent
to do the “discovering.” The search-
Services() method of the Discovery-
Agent class allows you to search for ser-
vices on a RemoteDevice. When services
are found, the servicesDiscovered()
method will be called by the JVM if your
object implemented the Discovery-
Listener interface. This callback method
also passes in a ServiceRecord object that
pertains to the service you searched for.
With a ServiceRecord in hand, you can do
plenty of things, but you would most like-
ly want to connect to the RemoteDevice
where this ServiceRecord originated:

String connectionURL =

servRecord[i].getConnectionURL(0,

false);

Service Registration
Before a Bluetooth client device can

use service discovery on a Bluetooth
server device, the Bluetooth server needs
to register its services internally in the
service discovery database (SDDB). This
process is called service registration.

Note: In a peer-to-peer application,
such as a file transfer or chat application,
any device can act as the client or the
server, so you’ll need to incorporate that
functionality (both client and server)
into your code in order to handle both
scenarios of service discovery (the client)
and service registration (the server).

Here’s an example of what’s involved
in getting your service registered and
stored in the SDDB (Listing 1 provides
the code; which can be downloaded
from www.sys-con/java/sourcec.cfm):
1. Call Connector.open() and cast the

resulting connection to a Stream-

WRITTEN BY
BRUCE HOPKINS

This article is the second installment in a two-part series on
Java and Bluetooth. Last month you got your feet wet in Bluetooth
(JDJ, Vol. 7, issue 8); if you don’t remember what the role of a
Bluetooth stack or a Bluetooth profile is in the context of a
Bluetooth application, refer to Part 1.

Share and collaborate in a
wireless network

H
om

e
J2

E
E

J2
SE

J2
M

E

Part 2 of 2

55SEPTEMBER 2002

Java COM

hit software
www.hitsw.com

Java COM

56 SEPTEMBER 2002

J A V A & B L U E T O O T H

ConnectionNotifier. Connector.open()
creates a new ServiceRecord and sets
some attributes.

2. Use the LocalDevice object and the
StreamConnectionNotifier to obtain
the ServiceRecord that was created by
the system.

3. Add or modify the attributes in the
ServiceRecord (optional).

4. Use the StreamConnectionNotifier
and call acceptAndOpen() and wait
for Bluetooth clients to discover this
service and connect. The system cre-
ates a service record in the SDDB.

5. Wait until a client connects.
6. When the server is ready to exit, call

close() on the StreamConnection-
Notifier. The system removes the ser-
vice record from the SDDB.

StreamConnectionNotifier and Con-
nector come from the javax.micro-
edition.io package of the J2ME platform.

That’s all that you need to do service
registration in Bluetooth. The next step
is communication.

Communication
Okay, Bluetooth is a communication

protocol, so how do you communicate
with it? Well, the Java Bluetooth API gives
you three ways to send and receive data,
but for now we’ll cover only one of them,
RFCOMM. RFCOMM is a the protocol
layer that the Serial Port Profile (SPP) uses
to communicate, but these two items are
almost always used synonymously.

Server Connections with the Serial Port Profile
Listing 2 demonstrates how to open

a connection on a Bluetooth device that
will act as a server. For the most part,
this is the same code used in service reg-

istration; service registration and server
communication are both accomplished
using the same lines of code.

Here are a few items that I want to
point out: the string URL begins with
btspp://localhost, which is required if
you’re going to use the Bluetooth Serial
Port Profile. Next comes the UUID part
of the URL, which is 0011223344556677
889900AABBCCDDEEFF. This is simply a
custom UUID that I made up for this
service; I could have chosen any string
that was either 32-bits or 128-bits long.
Finally, we have ;name=serialconn in the
URL string. I could have left this part off,
but I want my custom service to have a
name, so the actual service record in the
SDDB has the following entry:

ServiceName = serialconn

The implementation also assigned a
channel identifier to this service. The
client must provide the channel number
along with other parameters in order to
connect to a server.

Client Connections with the Serial Port Profile
Establishing a connection with the

SPP for a J2ME client is simple because
the paradigm hasn’t changed for J2ME
I/O. Simply call Connector.open().

StreamConnection con =

(StreamConnection)Connector.open(url);

Obtain the URL string that you need
to connect to the device from the
ServiceRecord object you get from service
discovery. The following is a more com-
plete demonstration of how an SPP client
makes a connection to an SPP server.

String connectionURL =

serviceRecord.getConnectionURL(0,

false);

StreamConnection con =

(StreamConnection)Connector.open(con-

nectionURL);

What does an SPP client connection
URL look like? If the address of the serv-
er is 0001234567AB, the string for the
SPP client would look something like
this:

btspp://0001234567AB:3

The “3” at the end of the URL string
is the channel number that the server
assigned to this service when it was
added to the SDDB.

Java Bluetooth Development Kits
Who makes this stuff and how can you

get your hands on it? Here are your options:

The JSR-82 Reference Implement-
ation was created by Motorola, so they’re
responsible for distributing it (www.
motorola.com/java). Unfortunately, this
Reference Implementation is only the
JSR-82 APIs (see Figure 1, section B) so
you won’t be able to do much with it
even if you have some Bluetooth hard-
ware. To get the JSR-82 Reference
Implementation to work on your devel-
opment system, you need to license the
Motorola CLDC as well.

If you already have Bluetooth devices
for your development computers, try out
the JSR-82–compliant Java Bluetooth
solution from Atinav (www.atinav.com).
They support numerous RS-232, UART,
USB, CF, and PCMCIA Bluetooth devices.
Their solution is based on an all-Java
stack and their SDK includes the follow-
ing profiles: GAP, SDAP, SPP, and GOEP.
This solution also includes a KVM, so
you only need to obtain the Bluetooth
hardware to create and test your apps.

Rococo (www.rococosoft.com) is
most famous for their Java Bluetooth
simulator, although they also make a
Java Bluetooth developer kit for the
Palm OS. Using the Impronto Simulator,
Java developers only need a single com-
puter to compile and test their Java
Bluetooth applications. The simulator
supports GAP, SDAP, SPP, and GOEP pro-
files, and is currently priced at $1,000.

Esmertec (www.esmertec.com) is well
known for their Jbed Micro Edition CLDC
implementation and the Jbed RTOS
package. The Jbed platform is based
upon their FastBCC technology, which
dynamically loads and executes Java
bytecode at native speeds (much like the
goals of the Project Monty KVMs). One
key advantage of Esmertec is that the
Jbed CLDC implementation can run on a
variety of different hardware platforms –
with or without an operating system!
Esmertec implemented their Bluetooth
stack completely in Java, and they sup-
port GAP, SDAP, SPP, LAP, and PAN on a
wide array of Bluetooth hardware mod-
ules. They also included support for Palm
OS and Pocket PC devices.

Smart Network Devices (www.smart-
nd.com) has a unique approach in their
Java Bluetooth development kit; they
include all the components shown in
Figure 1, section B, for a complete Java
Bluetooth–enabled device: a Bluetooth
device (radio), a Bluetooth stack,
Bluetooth profiles, a KVM, and the JSR-82
Java Bluetooth APIs. Their product is called
Micro BlueTarget Starter Kit – Java version
(see Figure 2), based on the Micro
BlueTarget reference board. It supports the
GAP, SDAP, SPP, and GOEP profiles. The
Micro BlueTarget is a not a peripheral (like

H
om

e
J2

E
E

J2
SE

J2
M

E

FIGURE 1 Bluetooth-enabled phone

AUTHOR BIO
Bruce Hopkins is a

senior Java
consultant at Great
Lakes Technologies

Group in Southfield,
MI. He has worked

with Java for over six
years, and has
researched in

wireless networking
for four. Bruce is the

coauthor of an
upcoming book

entitled Java
Bluetooth by Apress

(November 2002).

57SEPTEMBER 2002

Java COM

sitraka
www.sitraka.com

58 SEPTEMBER 2002

J A V A & B L U E T O O T H

the 3Com Bluetooth module in Figure 3).
It’s a self-contained Java Bluetooth host
device, so it doesn’t need to be connected
to a host computer to operate. It has its
own operating system and KVM built in,
and you can download your code to the
device using its Ethernet or RS232 inter-
face. You can buy the complete Java

Bluetooth development kit
for $2,880 and the Micro
BlueTarget boards in single
quantities for $425.

The Advantages of Java and
Bluetooth

Let’s look at a sce-
nario where life is made
simpler using Java and
Bluetooth technology: the
Java Shared Whiteboard.
Three employees of Acme

Widgets Inc.
need to have
an impromptu
meeting. Un-
fortunately, no
conference
rooms are avail-
able, so the
team is forced
to hold their
meeting in the
cafeteria. They

would have preferred using a confer-
ence room because each room is
equipped with an electronic white-
board. However, since every member of
the team has a Java Bluetooth–enabled
PDA, their meeting in the cafeteria is
very productive.

One member has a new program for
his PDA called the Java Shared
Whiteboard. Using Bluetooth technolo-
gy, he sends that program to the rest of
the team. Using Over-the-Air
Provisioning (OTA) provided by J2ME,
each member installs and runs the
application on the fly. The meeting can
now begin because the whiteboard is
shared among the PDAs. Each partici-
pant can draw figures on his or her
device and the image will appear
instantly on the other screens. To save
time, one member can take notes and
send them to everyone’s device while
the meeting is in progress.

What are the benefits of Java and
Bluetooth? Of course, Java gives you
platform independence for the Shared
Whiteboard application. Therefore, you
don’t need to worry about what kind of
PDA your fellow team members have
(Palm, Pocket PC, Sharp, Sony,
Handspring, etc.) as long as a compati-
ble KVM and libraries are available.
Bluetooth has an additional benefit – it

enables you to create instant wireless
networks with these devices in order to
collaborate and share data. This net-
work is portable, so you can move it to
the cafeteria, a conference room, or out-
side – it doesn’t matter.

Summary
It’s a great time to be a wireless devel-

oper. Bluetooth enables you to share
and collaborate in ways never imagined.
Now, I can enable my clunky old desk-
tops, laptops, and PDAs to participate in
a wireless network by simply adding a
KVM and a Bluetooth radio. The fun is
just beginning.

• • •

Book Overview
We’ve only scratched the surface with

Bluetooth. In our upcoming book, Java
Bluetooth, Ranjith Antony (my coauthor)
and I show how to use Java and Bluetooth
with multiple vendor SDKs and Bluetooth
devices. We’ll also cover many practical
scenarios for using Java and Bluetooth in
the real world for file transfer, security, and
encryption using a simulator, wireless
printing, and much more. The advanced
chapters will even show you how to use
Bluetooth in a Jini network. H

om
e

J2
E

E
J2

SE
J2

M
E

Java COM

javaspaces@comcast.net

sys-con media

FIGURE 3 Bluetooth radio

FIGURE 2 Micro BlueTarget Starter
Kit – Java version

59SEPTEMBER 2002

Java COM

fiorano
www.fiorano.com

IW
o

r
k

i
n

g

o
u

t

t
h

e

q
u

i
r

k
s

W
o

r
k

i
n

g

o
u

t

t
h

e

q
u

i
r

k
s

P a r t 2 o f 3P a r t 2 o f 3

n Part 1 of this series

(JDJ, Vol. 7, issue 6),

I showed how I

developed an MP3

player in Java, and

then added the ability

to control that player

from a wireless

handheld device using

a PersonalJava

application.

from the Palm
ofYourHand

written by Bill Ray

Whole House

Java COMJava COM

60 SEPTEMBER 2002

Java COM

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

SEPTEMBER 2002 61

Java COM

While I could only stop, pause, adjust the volume, and
select the next track to be played, I still found the application
useful, but not yet perfect…

The first problem to be addressed was the combinations
you can get when listening to your entire music collection at
random. When a nice relaxing Enya track fades out and you
find yourself launching into the world of Eminem, the shock
can be considerable, not to mention that sometimes I’m just
not in the mood for Aztec Camera…but have no preference
beyond that. So, some sort of weighting is needed.

My next problem was the networking side of things.
Wireless Ethernet is nice, but not ideal on the iPaq. In addition
to the devastating impact it has on the battery life, I can’t get it
to connect automatically on demand. This is because I use a
GPRS phone for my mobile Internet access (thus the method
of connectivity must be specified) and the networking inter-
face on Pocket PC devices isn’t very good. So when I’m using
the application, my iPaq has to be on all the time with the
drain of networking, or I have to manually connect to the net-
work whenever I want to control the music. Neither option is
useful, and as my iPaq has Bluetooth built-in (it’s a 3870), this
should provide an ideal wireless mechanism.

Listening Preferences
Starting with the weighting, I decided that each track

needed a descriptive profile. Since I don’t want to type these in
when I rip the tracks, there need to be default values that can
be adjusted later. I want to be able to adjust the settings of the
current track from the handheld, so if I’m listening to a track
and decide I like it a lot, I can increase the chances of it play-
ing again, or if I don’t like it, downgrade it so it’s unlikely to
pop up later.

After some consideration I came up with a few criteria.
Each track would have the following fields, rated from 1 to
100: how much I like the track, how fast it is, how loud, how
instrumental, and the name of the track that should follow.
The last field was put in as I have some tracks that should real-
ly be put together to make sense. The fast and loud fields refer
to how energizing and rousing I feel the music is – I like loud
music in the morning, fast music when I’m sewing, and
instrumental music when I’m programming. With this in
mind the user must be able to adjust his or her current listen-
ing preferences, based on the same fields (though not “liked,”
obviously).

Therefore, the process of deciding on the next track will be
as follows: once a track starts playing, the track specified in
the “preferred next track” field will be located and passed the
current listening preferences to see if it matches them. If it
does, it will be played next. If it doesn’t match well enough
(with a random element), another track will be selected at
random and asked if it matches the preferences. By default the
preferred next track is the following track on the album,
though the user can change this along with the other prefer-
ences. This way several tracks can be selected until one that
matches what the user wants to hear is found.

Note that a random element is also introduced, so even
tracks that are not liked much can pop up on occasion. Of
course, if I really hated them, I could always delete the files. I
also decided that it made sense to reduce the “liked” field by
one point each time the track was played, and increase it by a
point each time the track was rejected. This way my collection
should, in theory, rotate gently and ensure I get to hear every-
thing over time. After some discussion, I also included a
Boolean field called “aletiaApproved”. This notes if the track is
liked by my wife and allows me to specify that only such tracks
should be played. My music tastes are fairly broad and not

Java COM

62 SEPTEMBER 2002

shared by everyone, so this also provides a general liked-by-
most-people criterion.

Originally, I thought I would just serialize the Track objects
into a file and read them back, but this was extremely opti-
mistic. The Track objects contain media players and all sorts
of objects that can’t be serialized. I ended up creating a new
class just to contain the track details; this can be constructed
from a Track object or by specifying the field values as param-
eters. This means that when I wish to save the values (when
the application is shut down), I need to create an ArrayList of
TrackDetails objects with an entry for each track, and then
serialize this to the local disk.

This worked fine, but loading was more complex as I
not only had to load the file and create the Track objects
from it, I also had to add any new tracks that had been cre-
ated and remove any that had been deleted. I decided to
store the details in the same directory that was selected for
playback; this way I could have multiple files containing
track details without worrying about which one was being
used.

The application therefore looks in the current directory to
see if such a file exists. If so, it loads it, then goes through its
normal scanning process. Before adding any MP3 files to the
main playlist, it checks to see if it already has details for that
track (by comparing the full file name and path) – if it does, it
uses the loaded details, if not, it creates a default set. The track
is then added to the main ArrayList. This enabled me to auto-
matically add new tracks as well as remove tracks that had

been deleted since the last time the application was run, since
the loaded details are only copied to the live playlist when the
file is located – tracks for which there are no files are automat-
ically removed.

I also added a directory to my MP3 collection called
NoRandomPlay. MP3 files in this directory would never be
played at random, but could still be selected. I did this so my
Psion Digital Radio can save recordings of documentaries
and plays, which are not really suitable for randomly mixing
with my music but should still be selectable on demand.
Ideally, I’d like to be able to control my digital radio from my
mobile, but that will have to wait for another series of arti-
cles.

Network Protocol
Having decided how the application was going to work, it

was time to decide how to extend the network protocol to add
this functionality. Again, it’s always best to start with the serv-
er so it can easily be tested using HyperTerminal or something
similar. It’s clear that I’ll need four commands in total, two for
getting and setting the current listening preferences and two
for getting and setting the preferences for a particular track.
Given the noncritical nature of the application, I’m not too
worried about the bandwidth used, and I’m making the whole
thing case insensitive, as I did before:

[client] Get Preferences

[server] +Preferences Follow

[server] Loud: 50

[server] Fast: 50

[server] Instrumental: 50

[server] Aletia Approval: true

[client] Set Preferences:50#50*50-true

[server] +Preferences set

These commands will be used for getting and setting
the current listening preferences. The latter of these
deserves some explanation: the setting is done in a single
line, with the preferences being specified as loud, fast,
instrumental, and “Aletia approved”, with different
dividers marking the space between them. Using different
markers makes it harder for a human to read, but much
easier to parse for the application; for example, to extract
the loud field from an incoming preference the following
line can be used:

int loud = new

Integer(message.substring(message.indexOf(',') + 1, mes

sage.indexOf('#'))).intValue();

Basically this is laziness on my part. It would have been
better to have a properly human-readable protocol both ways,
but I didn’t bother. Setting and getting the preferences for a
particular track is almost identical:

[client] Style 3

[server] +Style Follows

[server] Number: 3

[server] Liked: 30

[server] Loud: 50

[server] Fast: 50

[server] Instrumental: 50

[server] Aletia Approved: true

[server] Next: 4

[client] Set_Style 3:30,50#50*50-true=12

+Style set

One additional field is specified: how much the track is
liked. The number of the track is also returned; this is where
the track lies in the ArrayList on the server and was included
in case I ever wanted to set the style based on the file name,
though that hasn’t happened yet.

After I got the server working (so few words, so much
work!) and tested with HyperTerminal, I started thinking
about how to manage the user interface. (If this had been a
commercial application, I would have probably started with
the interface, but as the whole thing is intended only for my
use, it was left until the end.) PersonalJava can support only
one frame and one dialog, but that applies only to those con-
currently visible. I’m already using one dialog for my track list-

Java COM

I did this so my Psion Digital Radio can save recordings of
documentaries and plays, which are not really suitable for randomly

mixing with my music but should still be selectable on demand”

H
om

e
J2

E
E

J2
SE

J2
M

E

“

63SEPTEMBER 2002

Java COM

inetsoft
www.inetsoft.com

Java COM

64 SEPTEMBER 2002

ing, so I created another two to set listening preferences and
set the preferences for a track. While I probably could have
used one class for all the preference settings, I decided they
were sufficiently different to warrant their own classes.

I really wanted a slider to set the various levels, but there’s
no Swing in PersonalJava. If I wanted one I would have to write
one, which I wasn’t keen on doing. Searching around among
my old work I discovered a slider object I wrote years ago,
before Swing existed, which suited me completely. As the class
was so old, it was able to work with PersonalJava and looked
considerably better than what I would have created this time
around (see Figure 1). It’s always nice to reuse a component,
especially one you can’t remember creating.

With my sliders it was fairly easy to put together the inter-
face for setting track and listening preferences. When the user
wants to set preferences, the client asks the server for either
the current listening preferences or the track preferences as

requested by the user, then sets the levels of the sliders to the
right place and makes the dialog visible. Changes are written
back to the server when the dialog is dismissed.

The track preferences dialog didn’t have the space for me
to allow the user to alter the preferred next track, so that will
have to wait until the next version.

Overall the system works pretty well, generally playing two
or three tracks from an album before moving on to the next one,
which makes for a much better listening experience. Setting the
preferences has an influence, but still allows for occasional sur-
prises, though for some strange reason the application still has
a thing about “Hey Mr. President” by 4 Non Blondes.

Networking
The next problem was the networking and required a more

radical solution. I liked having multiple clients, often running

the client on my PC when I was working and sending the
instructions over the wired LAN, so that would have to stay,
but something had to be done about the mobile devices.

Bluetooth provides the ideal mechanism for such an appli-
cation, with low power consumption and the ability to con-
nect very quickly. While the iPaq is Bluetooth-capable, it
needs another Bluetooth device to speak to, so I invested in a
Bluetooth Network Access Point from Inventel (I did actually
need it for another project too; I’m not quite that frivolous).
Given the relative youth of the protocol and my urgent need
(for my other project), this arrived without a manual of any
sort and with drivers for another device entirely. But with the
helpful support of the Inventel people I managed to get it
working. It turned out to be running Linux, which proved
immensely helpful in getting it working.

With a device like this I could attach my iPaq to the net-
work and route TCP/IP packets over my LAN, or even the

Internet (though I still don’t have DNS working properly) via
my ADSL line (see Figure 2). I have to admit I was surprised
when my application ran without modification, though I
shouldn’t have been. While it helped, the battery consumption
was still too high and I had to connect manually each time.

It’s also wrong. While connecting to a LAN is useful, it’s not
what I wanted to do. My application wants to connect to a
server; the LAN is used only as an intermediate step and is
redundant. Bluetooth is about connecting devices to each
other, not to networks (Wireless Ethernet is perfectly good for
these kind of applications), so I should try to connect directly
to the server. In that case, the server will also need Bluetooth
connectivity, which was provided by a TDK Bluetooth USB
Adapter (with the added benefit of allowing both my iPaq and
Palm handhelds to synchronize wirelessly). Now that I had the
hardware in place, it was time to think about how to get the
software working with it.

One of the problems with Java, in fact, the primary prob-
lem, is its inability to support hardware it hasn’t heard of.
While there’s a JSR for Bluetooth, it’s still a work-in-progress,
and it will be a while before we see any implementation, so
we’re on our own for the moment. However, Bluetooth was
designed with compatibility in mind, and within the protocol
are various “profiles” that define how different applications
might use Bluetooth without getting involved with the whole
radio thing. One of these profiles defines a standard for serial
communications, so it should be possible to create a serial
connection from the client to the server from Java. The iPaq
defines two serial ports as working with Bluetooth: COM8 is
used for outgoing connections while COM7 is used for incom-
ing. On the PC these change to COM3 and COM4, respective-
ly, though configurable through the TDK software. Of course,
when you open a serial connection you don’t normally speci-
fy a destination, so some experimentation was necessary to
establish where an outgoing connection would end up. This

Java COM

FIGURE 2 Bluetooth ManagerFIGURE 1 Slider

“Bluetooth was designed with compatibility in mind, and within the
protocol are various ‘profiles’ that define how different applications

might use Bluetooth without getting involved with the whole radio thing”

H
om

e
J2

E
E

J2
SE

J2
M

E

65SEPTEMBER 2002

Java COM

improv tech
improv-tech.com

showed an outgoing serial connection will connect to the last
place a serial connection was made to, so getting it working
was simply a matter of making the connection manually once,
then running the software when required.

While this sounds good, there’s one problem: serial con-
nections are not part of PersonalJava. Not all PersonalJava
devices are considered to have a serial port so we’re reduced to
the lowest common denominator. Luckily James Nord fixed
this particular failing with a serial API that works on an iPaq
and other Pocket PC devices, and is available free from his
Web site (see Useful Links at the end of this article). He’s never
actually used it with Bluetooth, but helpfully pointed out that
I was using an old version that didn’t support the event-driven
reception of data; it works perfectly with the latest version.

Testing the connection was relatively easy once I got the
right version of the Serial API on my iPaq and the server; I used

the same code on both. Opening the port is a matter of working
through the available ports until one matches the desired port:

String port = "COM3";

portList = CommPortIdentifier.getPortIdentifiers();

while (portList.hasMoreElements()) {

portId = (CommPortIdentifier) portList.nextElement();

if (portId.getPortType() == CommPortIdentifier.PORT_SER-

IAL) {

if (portId.getName().startsWith(port)) {

CreateConnection();

}

}

}

Once the port has been identified, it’s opened in the nor-
mal way:

serialPort = (SerialPort) portId.open("Test3", 2000);

inputStream = serialPort.getInputStream();

outputStream = serialPort.getOutputStream();

serialPort.addEventListener(this);

serialPort.notifyOnDataAvailable(true);

Setting the parameters is optional, since it won’t matter if
they don’t match. Any parameters set will be used only in the
connection between the Java application and the Bluetooth
stack, but they can be set for completeness:

serialPort.setSerialPortParams(57600, SerialPort.DATA

BITS_8, SerialPort.STOPBITS_1, SerialPort.PARITY_NONE);

From this point it’s just a matter of writing data as required
and reading it back through events:

outputStream.write("My Message".getBytes());

outputStream.flush();

Remember to flush the buffer. The availability of data is indicat-
ed through a normal event, so the data can be read in (see Listing 1).

Now the client and server can communicate over the serial
link, which is established within a second or two of the appli-
cation being launched. The same protocols can be used, and
the server simply needs to launch a second thread for listening
and reporting serial communications (actually, it doesn’t need
to be a thread as the serial reading is not a blocking action). As
the server was designed to cope with multiple clients, it has no
problems with this and the application works.

Conclusion
Now I’m getting there: my application plays the music I

like, tailored to fit my mood, and I can control it by simply
turning on my iPaq and running the application; but the
project isn’t over yet. Some time ago I wired the whole house
with speakers, as I like music wherever I go, but banks of
switches are not ideal; more than once I’ve wandered
upstairs to find that what we’re watching on TV is being
blasted in the bedroom. Now that I can control my music
from my mobile, I need to start controlling the sound. In Part
3 I’ll be adding the ability to turn speakers on and off from
my application.

Useful Links
• Pocket PC Serial Library: www.teilo.net/software
• Desktop Serial Library: http://java.sun.com/products/java-

comm/index.html
• Bluetooth Bits: www.expansys.com
• Digital Radio: www.psion.com

AUTHOR BIO
Bill Ray has worked for several telecommunications companies around Europe,
including Swisscom where he was responsible for the development of their
Java-compatible DTV platform. He is secur ity editor for Wireless Business &
Technology and coauthor of Professional Mobile Java Development , published
by Wrox Press .

public void serialEvent(SerialPortEvent event) {
if (event.getEventType() == SerialPortEvent.DATA_AVAILABLE) {

byte[] readBuffer = new byte[inputStream.available];
String message = "";
try {

while (inputStream.available() > 0) {
int numBytes = inputStream.read(readBuffer);

}
message = new String(readBuffer);
System.out.println("Received :" + message);

} catch (IOException e) {
e.printStackTrace();

}
}

Listing 1

Java COM

66 SEPTEMBER 2002

Java COM

H
om

e
J2

E
E

J2
SE

J2
M

E

While this sounds good, there’s
one problem: serial connections are

not part of PersonalJava”“

bill@network23.co.uk

67SEPTEMBER 2002

Java COM

zerog
www.zerog.com

Java COM

68 SEPTEMBER 2002

Over the past couple of years, a
number of Java development
tools have appeared on the mar-

ket; these tools focus on various aspects of
software development, such as modeling,
deployment, and testing, and aim to
increase productivity. As a developer,
prominent on my wish list is a produc-
tivity tool that addresses code develop-
ment. The main criteria when looking
for this tool was that it should assemble
code quickly as well as be flexible
enough for me to change the assembled
code. AccelTree’s FULCRUM promises
all this and more.

FULCRUM speeds up core tasks –
code assembly, data structure defini-
tion, validations, documentation, and
more. The driving concept of FUL-
CRUM is the generalization of repeated
patterns of Java code in the form of
templates that can be used as “building
blocks” to construct efficient Java
objects and applications.

Templates
The palette of templates that the

product provides includes Java classes,
EJBs, class methods, code blocks, and
program specification templates that
generate documentation automatically.
Also included are predefined JavaScript
front-end validations for data formats and

numeric validations that can be linked to
HTML controls using FULCRUM’s Pre-

sentation Manager. While FULCRUM does-
n’t create the HTML file, it generates XML

and XSL on the fly, which can then be ren-
dered on a browser.

While most complex data structures sup-
ported by Java are meaningful only at run-
time, FULCRUM provides a virtual
configuration mechanism to help
developers get the meaning by look-
ing at the vectors or data structures
configured within FULCRUM. This
also reduces documentation needs.
The product features a business rule
engine to which the middleware
components can make calls as need-
ed at runtime. This satisfies a critical

need of application configuration by enabling
you to edit business rules without modifying
code.

Installing and Using FULCRUM
Getting started using the installation CD

for version 1.1 was a breeze. The requirements
for FULCRUM include J2SDK version 1.3,
ActiveX Bridge 1.0 (Java plug-in), Microsoft
Windows Installer, Microsoft XML Parser 3.0,
and MDAC 2.5. The setup wizard lets you
include these in the course of installation if
you don’t have them already.

Java application development with FUL-
CRUM does not require any additional run-
time software. Setup was essentially smooth
and in a couple of minutes I was checking
out the product features. I had previously
checked out version 1.0 and found that get-
ting the hang of the development flow was
not exactly a piece of cake. The documenta-
tion gave me a basic idea about the tool, but
left me befuddled in terms of actually using
the features. The online documentation was
not very clear either. I needed better guid-
ance with concrete examples to visualize
how templates were used within FULCRUM
to develop and test an application as well as
to see how it could help me with code assem-
bly.

Version 1.1 turned out to be a vast
improvement, in this respect. The Help docu-
mentation provided an extensive introduc-
tion to the concepts and included a compre-
hensive FAQ. It also came with a tutorial
guide and CBT, which I hoped would get me
up and running in a couple of hours. Not
quite. Though the tutorial examples were
lucidly written, it took me almost two days to
gain enough of a comfort level with the prod-
uct features to really start using the tool.

info
REVIEWED BY KEDAR GODSE kedar@harbinger-systems.com

FULCRUM
Professional
Edition

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

P R O D U C T R E V I E W

by AccelTree
1.1

AccelTree Software
4th Floor, KPCS House
Bhusari Colony, Paud Road
Kothrud, Pune 411 038
India
Web: www.acceltree.com
Phone: 91-20-528 5881
Fax: 91-20-528 5884
E-mail: info@acceltree.com

Specs
Platforms: Windows NT/2000/XP
Databases: Oracle, DB2
Pricing: $495

Test Platform
Intel Pentium IV, 20GB disk, 128MB of
memory, Windows 2000, Oracle8i
database, JRun Web server

isavvix
www.isavvix.com

Java COM

70 SEPTEMBER 2002

P R O D U C T R E V I E W

FUL
CR

UM
 Pr

ofe
ssio

nal
 Ed

itio
n 1

.1 b
yA

cce
lTr

ee
L

ab
s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

Since we were in the process of designing an in-house
resource management system, I decided to use FULCRUM to
quickly develop a simple application framework and get a sense
of how helpful the tool would be. The application specs required
three Java classes for maintaining employee data, maintaining
project data, and assigning appropriate employees to projects.

After briefly reviewing the tutorial and initiating the project
within FULCRUM, I defined the program specifications
through the FULCRUM Program Specification Wizard, which
promptly generated a program specification document (see
Figure 1). The wizard also helped me define the class, select
the appropriate template from FULCRUM’s template library,
and set up the naming conventions for the class, methods, and
variables. The defined class is saved as a .java file.

I included the Java file within the project module using the
FULCRUM Project Explorer and added variables and methods
to the class using the class builder functionality, which also
provides an advanced code editor so you can enter your own
code. The editor supports syntax highlighting for Java and
HTML in addition to the usual editing features.

To test the class, FULCRUM generates a test JSP that pass-
es dummy values as parameters to the methods and displays
the returned data in a browser window. I used FULCRUM’s
Presentation Manager to map between HTML controls and
Java class variables (see Figure 2), and FULCRUM generated
the Presentation JSP based on this.

Although the module I’ve described here is quite simple,
checking out all the FULCRUM features and implementing
them took me several hours. However, the time invested
helped me develop the other classes speedily in about half the
time I would typically expect.

Summary
Though the benefit of using templates for code development

is intuitively obvious, the way FULCRUM integrates this concept
across the development process from specification to testing
gives the tool its real power and value. If reinventing the wheel is
not your hobby and you need a tool to take care of the tedious
development overhead, the FULCRUM Java code assembler is
what you’ve been looking for. Be prepared to spend a couple of
days learning its concepts, though it will be time well spent. While
a skilled or expert Java programmer can utilize this tool to the
maximum advantage in large developments, even a programmer
with modest Java experience will gain insight into overall archi-
tecture by using the FULCRUM process for development.

JDJ Product Snapshot
Target Audience: Java developers, technical architects,
application designers
Level: Advanced beginner to skilled
Pros:
• Speedy creation of classes and methods
• Quicker code assembly, checking, validation, and testing
• Product comes with CBT
• Well-written Help documentation and tutorial
Cons:
• Unlike an IDE, debugging and creation of HTML screens

need to be done external to FULCRUM

north
woods

p/u

FIGURE 2 Mapping of HTML controls and Java class variables

FIGURE 1 Program Specification Builder for template selection

71SEPTEMBER 2002

Java COM

it toolbox
www.ittoolbox.com

Java COM

72 SEPTEMBER 2002

Imust admit, until recently my
idea of an integrated develop-
ment environment was Emacs, a

couple of shell windows, and a six-
pack of Dr. Pepper. I had nothing
against IDEs, in fact I was all for
them, I just couldn’t find one that
worked for me, instead of the other
way around. Everything I tried
either didn’t format code the way I
liked, required the entire develop-
ment team to convert to it, didn’t
run my build scripts, wouldn’t
talk to my source code control
system, or otherwise forced me to bend
to its will. Maybe I’m too picky, but hey
– I like to do things my way.

For the past several months, howev-
er, I’ve been developing almost exclu-
sively with various beta builds of
IntelliJ IDEA 3.0. It still has some bugs,
of course, but this new IDE is so spec-
tacular that even in its preproduction
state I can’t imagine coding without it. I
introduced a few co-workers to the
software to hear their opinions, know-
ing each of them already had estab-
lished their own favorites – NetBeans,
Forte, JBuilder, JRun Studio, and Visual
J++. They’re all using IDEA 3.0 now.

IntelliJ IDEA 3.0
JetBrains, Inc. (formerly IntelliJ

Software), is based in Prague, Czech
Republic, and St. Petersburg, Russia. They

have released a number of successful Java
development tools, most notably their Java

IDE, IntelliJ IDEA. The latest version, 3.0, is
scheduled for release this fall and will

include some major enhancements, such as
full JSP/EJB support, integration with Ant and
JUnit, XML support, and a rich plug-in API for
developing extensions. Like IDEA 2.5, IDEA
3.0 includes support for
macros and code gen-
eration shortcuts, all
dramatically improved.
Of course, all the basics
are there as well – a nice
debugger, code com-
pletion, searching, re-
placing, code format-
ting, syntax/error high-
lighting, and source
code control system
integration. The popup
code completion and
JavaDoc hints are first
rate, and super easy to
use and configure. I’m
finding new features
every day and, unfortu-
nately, it’s impossible to
cover all the goodies in
one article.

Notably absent from the feature list are
GUI builder tools like the ones found in
NetBeans and other IDEs. While there’s plenty
of room for discussion regarding the vices and
virtues of GUI builders, it’s an important dis-
tinction worth noting for those who find them
useful.

The IDE itself is written in Java and,
unlike Eclipse, uses Swing for the GUI.
While complex Swing applications tend to
suffer from Java’s overhead, IDEA’s inter-
face is fast and responsive, even on a mid-
level machine. It even behaves well with
large projects with thousands of source
files. The software should run on any plat-
form with JDK 1.4 installed (a JDK 1.3–com-
patible version is planned), but the primary
supported platforms are Windows, Mac OS,
and Linux.

Figure 1 shows a typical shot of IDEA 3.0
in action. The interface should be comfort-
ably familiar to anyone who has used an IDE
before; nothing radical here. Apart from a
toolbar and menu selections, IDEA 3.0 uses
a series of tool windows that dock along the
margins to provide access to such things as
code structure, compilation messages, and
debugging stack frames. These windows can

info
REVIEWED BY DUANE FIELDS duane@deepmagic.com

IntelliJ
IDEA

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

F I R S T L O O K

by JetBrains, Inc.
3.0

JetBrains, Inc.
(formerly IntelliJ Software)
Klanova 9/506
14700 Prague
Czech Republic
Web: www.intellij.com/jetbrains/
Phone: +7 (812) 380-1641
Fax: +7 (812) 380-1643
E-mail: info@intellij.com

Platforms
Windows, Mac, Linux, other JDK 1.3
platforms

Pricing
$395 (quantity discounts available)

Test Platforms
• AMD 1.33GHz, 784MB of RAM,

Windows XP
• 700MHz Intel Pentium, 256MB of

RAM, Windows 2000

FIGURE 1 IDEA 3.0 in action

73SEPTEMBER 2002

Java COM

sys-con media

Java COM

74 SEPTEMBER 2002

F I R S T L O O K

be moved around and displayed however you see fit. You can
dock them, float them, make them slide in and out over your
main window, and make them hide themselves when not
needed.

As with most IDEs, you work on code as part of a project. A
project includes your classpath, pointers to your source files,
and build and run targets. Each project you define is stored as
an XML file to keep on your local file system. One of IDEA’s
strong points is that it doesn’t force you to set up your code
structure any particular way, nor does it force you to use its
internal build engine to compile. It’s perfectly happy to call out
to Ant to perform the build, for example. You can even choose
to store source and library-path references relative to the proj-
ect file, making it easy to share a project file with a team of
developers or between machines.

Flexibility Is the Key to Happiness
IDEA 3.0 is as flexible as a three-legged rubber monkey. It’s

like no other IDE (or any other tool for that matter) I’ve encoun-
tered. You can customize everything about this program – from
code formatting, syntax coloring, imports organization, and
error highlighting to how your windows and tool bars are ori-
ented. Perfect for particular programmers like myself!

Take the issue of spacing in your code. Unlike other IDEs
that offer two or three spacing choices, IDEA 3.0 gives you lit-
erally dozens of options. As you can see in Figure 2, you can
control every nuance of your code spacing style. Similar
options are provided for controlling how braces, blank lines,
and other stylistic choices are handled.

Your formatting options can be applied selectively to a sec-
tion of code, an entire file, or even all the files in your project
or directory. When you cut and paste code in the editor win-
dow, IDEA automatically formats the code appropriately,
including inserting appropriate indentions and keeping every-
thing nice and neat. IDEA’s flexibility doesn’t end at source-
code formatting, of course. You can control the positioning of
all the tool windows, the various aspects of code completion,
coloring, and the entire collection of hot keys.

Refactoring Support
IDEA 3.0 would be an excellent IDE even if its flexible con-

figuration and ease of use were its greatest assets. Its support
for code refactoring is by far the most exciting feature.
Refactoring, the process of continually improving your code
and its structure, is one of those things that we all know is
important, but we tend to slack off because it can be a pain to
reorganize our code and class structure without breaking
everything. Not so with IDEA. It supports many of the refac-
toring patterns discussed in Martin Fowler’s seminal work on
the subject, Refactoring. Some of the capabilities include:
• Changing a method’s signature to include new arguments
• Renaming or moving classes, methods, and members
• Extracting selected items from a class into a new interface
• Introducing a variable from a selected expression
• Encapsulating field references into a method
• Pulling members up into a super class

IDEA makes it trivial to rename a class or move it to anoth-
er package. Not only does it make the necessary changes to the
code, it tracks down and corrects all the references to the class
in Java code, import statements, JSP scriptlets, even Javadoc
comments and XML files (like your Struts config file). In addi-
tion, it removes the old file from your version control system
and adds the new one. It’s so seamless that you don’t think

twice about moving a method from one class to another or
reorganizing package structure as your project evolves. This is
the first time we have such powerful tools in such a reasonably
priced IDE.

J2EE Support
IDEA is way ahead of the game in terms of supporting JSP

and EJB development. Most IDEs stop at syntax highlighting
for JSPs, but IDEA adds much more. It allows you to define the
roots of your Web applications in your source tree, providing
internal awareness of your tag libraries, classpaths, and other
properties. It can then perform code completion on JSP tags,
bean properties, and even the file path include statements. It
highlights Java errors in scriptlets and complains about invalid
object references just as it does with Java source code. It gen-
erates EJB interfaces and allows full refactoring of them as
well. JetBrains also promises integrated JSP and EJB debugging
in the final release, but it was not yet available at the time of
this writing.

Summary
I feel as if I haven’t scratched the surface of everything this

IDE can do and how well it does it. Overall, I’m very impressed
by this as of yet unreleased product. Beginners will appreciate
its good, easy-to-use editor, code completion, version-control
system integration, and flexible configuration options, while
advanced users will marvel at its seamless support for powerful
refactoring operations and its rich plug-in API. Developers who
are used to code wizards and GUI builders may be disappoint-
ed, however, as this tool does not attempt to address these areas.

Everything is wrapped up into a nice, reasonably priced
package that most development shops should actually be able
to afford. IntelliJ IDEA 3.0 will be available this fall.

Product Snapshot
• Target Audience: Java and JSP programmers
• Level: Beginner to advanced
• Pros: Flexible code formatting and interface, extensible

API, first-class J2EE support, powerful code generation,
Ant and JUnit support

• Cons: Limited support for non-Java source files, no GUI
builder

Ine
tel

lij
IDE

A 3
.0

by
Jet

Bra
ins

,In
c.

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

FIGURE 2 IDEA 3.0 source formatting options

Java COM

100 SEPTEMBER 2002

�Our World Live, Inc. to Demonstrate
HIP 1.0 PJ and HIP 1.0 J2IP at
JDJEdge West
(Huntington Beach, CA) – Our World
Live, Inc. (OWL) will demonstrate its
Human Interface Package (HIP) prod-
ucts for Personal Java (PJ), J2SE, and
J2EE at JDJEdge 2002 West in San Jose,
CA, October 2-3.

At the JDJ Partner Pavilion booth,
OWL will show how its 100% Pure Java
products, HIP v1.0 PJ and HIP v1.0 J2,
transcend the limitations of Sun’s AWT
and Swing, enabling Java developers to
develop advanced GUIs and reduce
development time with out-of-the-box
APIs for true freeform shapes, trans-
parencies, and dragability. Show spe-
cials and giveaways will be offered.

“For the first time, Java applica-
tions can easily incorporate trans-
parencies and freeform shapes,
enabling more efficient use of limit-
ed screen real estate, providing a
better user experience, and reducing
development time,” said Andreas
Haas, OWL’s CTO. Available online
through OWL’s Web site, HIP prod-
ucts can be licensed by developers,
enterprises, OEMs, and educational
institutions.
www.ourworldlive.com

�Sun Unveils Java 3D API 1.3
(Santa Clara, CA) – Sun Microsystems,
Inc., has brought new features and func-
tionality to its Java 3D API graphics tech-
nology with the debut of Java 3D version
1.3. New features include configured uni-
verse and depth-sorted transparency
capabilities, as well as advanced texture
mapping and performance improve-
ments.
www.sun.com

�Parasoft Delivers Jtest to
Complement Sun ONE
Studio IDE
(Monrovia, CA) – Parasoft’s
Jtest is now available for
integration with the Sun
ONE Studio Integrated
Development
Environment. It automates
key unit testing practices,
such as white-box, black-
box, and regression testing,
and enforces more than
300 industry-respected
coding standards through
static analysis. It also has
rules support for EJB com-
ponents, Design by Contract (DbC), JSP
technology, servlets, and project metrics.
www.parasoft.com

�BEA Challenges Developers to Build
Reliable Web Services in Minutes
(San Jose, CA) – BEA Systems, Inc., has
challenged developers to make the
“WebLogic Workshop Web Services
Connection” and see just how easy it is
to build a Web service in minutes.

Contestants receive a free T-shirt and
are entered into a drawing for one of
three prizes, including a two-year sub-
scription to SYS-CON Media’s BEA
WebLogic Developer’s Journal.

To participate, go to http://dev2dev
.bea.com/products/wlwpromotion.jsp.

�Manning Releases Java Development
with Ant
(Greenwich, CT) – Java Development
with Ant, by Erik Hatcher and Steve
Loughran, shows both beginner and
experienced users powerful and cre-
ative uses for Ant. The book empha-
sizes basic concepts, starting with Ant’s
XML-driven build process, and leads
you step-by-step through everything
you need to know to compile, test,
package, and deploy an application. It

then guides you through the maze of
more complex situations common in
larger projects such as enterprise Java
applications and Web services.
www.manning.com

�Sybase Introduces Borland JBuilder 7
Enterprise - Sybase Edition
(Dublin, CA) – Sybase, Inc., has
announced the availability of the next-
generation Java development environ-
ment, Borland JBuilder 7 Enterprise -
Sybase Edition. The software simplifies
EJB 2.0 development with two-way visual
designers and rapid deployment to Sybase
EAServer. It enhances developer produc-
tivity with UML code visualization, refac-
toring, unit testing, and documentation
tools, and enables development and
deployment of applications on Windows,
Linux, Solaris, and Mac OS platforms.

Sybase has also announced EAServer
4.1, the first application server with J2EE
1.3 compatibility for AIX and HP-UX
development platforms.
www.sybase.com

�TogetherSoft Announces Plans to
Acquire WebGain Technology
(Raleigh, NC / San Jose, CA) – TogetherSoft
Corp. and WebGain, Inc., have
announced that TogetherSoft plans to
acquire WebGain Studio, which consists
of VisualCafé, StructureBuilder, Business
Designer, and Quality Analyzer and pro-
vides support for BEA WebLogic Server.

As part of the proposed agreement,
TogetherSoft intends to provide full sup-
port for current WebGain Studio cus-
tomers. TogetherSoft will also provide an
integration package, offering WebGain
Studio customers the opportunity to
migrate to TogetherSoft’s application
development environment.
www.togethersoft.com

N
ew

s

J2
SE

H
om

e
J2

E
E

J2
M

E

SITRAKA PARTNERS
WITH BEANS FACTORY

(Toronto) – Sitraka has formed a new partnership
with Beans Factory, a leading component technolo-
gy enabler in Asia, to support Sitraka’s growing Asia-
Pacific client base. Beans Factory will initially be
providing Sitraka JProbe training courses to cus-
tomers in the Asia-Pacific region, offering onsite pri-
vate training for development teams and public
training sessions for individuals.
www.beansfactory.com
www.sitraka.com

>

JAVANEWS>

THOMAS GIVENTER WINS

WEAKEST GEEK CONTEST

(New York) – Thomas Giventer (Giventer Software
Systems, Ithaca, NY) was the grand prize winner of
SYS-CON Media’s Web Services Edge/JDJEdge 2002
East Weakest Geek competition, a Java, XML, and
Web Services technology trivia contest. Giventer
competed against fellow developers, the clock, and
JDJ editor-in-chief Alan Williamson for the $10,000
prize, sponsored by Rational and IBM.

Six qualifying-round winners each received a
copy of Rational XDE Professional and IBM
WebSphere Studio Application Developer software.
www.sys-con.com

>

77SEPTEMBER 2002

Java COM

Exclusive: Excerpts from JavaDevelopersJournal.com

JDJ EDITOR INCENSED: ‘WHAT’S MICROSOFT UP TO?’ HE ASKS....

WILL MICROSOFT ever carry a truly current and compatible
Java Virtual Machine in Windows XP? That’s the question Java
developers worldwide began asking themselves the moment
they heard of Microsoft’s announcement that it is reinstating the
ability to run Java programs in Windows XP, as of the new release
of the service pack this summer.

“I can only regard this as a ploy by the monopolist to avoid
having Judge Whyte issue a preliminary injunction,” thunders
JavaLobby founder Rick Ross, referring to the statement by Jim
Cullinan, lead product manager for Windows, that, “For the next
year and a half, Microsoft is going to include the JVM in
Windows XP.”

Cullinan added: “Then we’ll make the changes to make sure
that moving forward, we don’t put Windows or our customers at
risk.” This prompted Java Developer’s Journal editor-in-chief
Alan Williamson to comment: “It’s a great headline – ‘Java is back
in Windows XP’ – but the small print stinks.”

Williamson continues: “It would appear that politicians
aren’t the only ones with the ability to do a turnabout in the face
of public opinion. Microsoft has announced that our dear friend
Dukey is to return to Windows XP; however, the taste is bitter-
sweet. They will be shipping their own JVM implementation,
which if you remember, they were only licensed to use up to ver-
sion 1.1.4.

“Sun has yet to comment on this,” Williamson notes. “But I
am sure that, like me, Java developers everywhere will be

incensed that the announcement has only gone so far, and not
really far enough.

“Sadly this doesn’t take us any closer to the situation where
we can ship our Windows users an executable JAR file with com-
plete confidence that they have all the necessary software in
place. Microsoft has made overtures that this Java addition will
be only temporary, i.e., for the next 18 months only, and they will
not be making any effort to update or fix any bugs, citing the Sun
agreement as the reason why they can’t.

“You can’t help but be suspicious about the whole thing,”
says Williamson. “Is Microsoft doing a sleight-of-hand trick? Are
we to be watching the left hand for the time being, not aware of
what the right hand is doing? What are they up to?”

JDJ’s J2ME editor, Jason R. Briggs, is also highly skeptical of
Microsoft’s motives, observing that “Not only do they re-include
their obsolete VM, thereby gaining some needed points with the
courts (they hope), but they also manage to dilute the Java
brand in the meantime.”

Briggs’ fear is that the general public will come to associate
the term “Java” with software that may turn out to be insecure.
“And since ostensibly they now ‘already have Java installed’,”
Briggs explains, “the risk is that they won’t go and download
Sun’s better/later model.”

Somewhat ruefully, Williamson concurs. “As with many
Microsoft announcements,” he says, “more questions are usual-
ly asked than answered. This one is no different.”

by JDJ News Desk

sys-con media
www.sys-con.com

L E T T E R S T O T H E E D I T O R

Java COM

102 SEPTEMBER 2002

Stay Focused

Ithink Sun has chosen a bad strategy to
promote Java and J2EE (“Are You Ready to

Rumble” by Michael Deasy
[Vol. 7, issue 7]). They spend too
much time pointing the finger
at the “evil” Microsoft instead of
focusing on the technology.
Why is this a bad approach?
1. It looks as if there’s nothing

interesting about the tech-
nology if they put the main
focus elsewhere (Microsoft,
etc.). If in the introduction
to the platform they quote
the lawsuit against
Microsoft, it makes me feel
that the whole purpose of
Java and J2EE is to kick
Microsoft’s ass – a “cheap” reason to
live for such a cool platform, isn’t it?

2. My experience is if I want to do perfect
work, I have to stay focused on what I’m
doing, not on finding out what’s wrong
with the others (except to avoid
the same mistakes and make
my work better). Which in this
case means that instead of
focusing on possibly relevant
but definitely unconstructive
criticism, they should make sure
the crucial presentation is per-
fectly prepared (referring to the
failed connectivity example in
Question #3). Everybody should
agree the second is harder to
accomplish, and I truly hope
that was not the main reason to
focus on the first.

Igor Koziak
ikoziak@montage.ca

Sun Is Java’s Worst Enemy

J2EE blows .NET away
completely on technical

merits alone. The depth,
richness, and reliability of
this platform are awesome in
comparison to .NET, which is
a version 1.0 platform with
an aggressive marketing
strategy. Why would Sun
choose to promote Java
based on corporate cultural
differences? Nobody cares!
Java should have been repre-
sented by IBM. At least they
understand what J2EE is and
why it is by far the best solution.

Ted Barbusinski
tbarbusinski@stellcom.com

Good Reference

Programming Restrictions in EJB
Development” by Leander van

Rooijen (Vol. 7,
issue 7) is an
excellent article. It
provides a good
reference for EJB
developers. I was
confused about
EJBs and the
helper classes
related with
thread usage; this
article made it a
lot clearer.

Veerendra Shukla
sveerendra
@netpace.com

Stop Comparing Apples to Oranges

Iget a little tired of people who equate
vi with a development environment

(“Integrating
Development” by
Ajit Sagar [Vol. 7,
issue 6]). When
was the last time
you used vi on
Windows? The fact
is, vi is used in the
“Unix develop-
ment environ-
ment.” Unix was
and still is an OS
written by pro-
grammers, for pro-
grammers. It con-
stitutes a develop-

ment environment with a powerful set of
tools (grep, X-Windows, shell scripting,
make, etc.).

Please, let’s stop
comparing apples to
oranges, and compare
the various IDEs to the
Unix environment.

Ron Theriault
ron-t@austin.rr.com

Doing Business with the
Opposition

Iwas just wondering
why Steve Ballmer is

interested in doing
business with the
opposition (“Java in a

Flash!” by Alan Williamson [Vol. 7, issue
7])? I don’t know how wise it was to go to
Redmond. With .NET, Microsoft is trying
to survive in the server networking

industry.
Sun in their
wisdom has
known all
along that
the network
is the com-
puter!

Major
question:
Will
Microsoft
make dis-
tributed
computing

a more friendly place for all?

James Ruvoo
jruvya@yahoo.com

Under the Hood

Hello
World! in

70 Bytes” by
Norman
Richards (Vol.
7, issue 7) is
perfect for
those readers
who really
want to under-
stand what
happens under
the hood of the
JVM.

Mike Morris
mmorris@topcoder.com

L
et

te
rs

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COMJava COM

104 SEPTEMBER 2002

Training Days

C A R E E R O P P O R T U N I T I E S
J2

SE
H

om
e

J2
E

E
J2

M
E

jdjcolumn@objectfocus.com

How (and where) to brush up on your skills

AUTHOR BIOS
Bill Baloglu is a

principal at
ObjectFocus

(www. ObjectFocus
.com), a Java staffing
firm in Silicon Valley.

Bill has extensive OO
experience and has

held software
development and

senior technical
management

positions at several
Silicon Valley firms.

Billy Palmieri is a
seasoned staffing

industry executive and
a principal at

ObjectFocus. His prior
position was at

Renaissance
Worldwide, where he

held several senior
management positions

in the firm’s Silicon
Valley operations.

The engineers we work with under-
stand that ongoing training is a fact of
life. There are many different ways to get
this training, and some of our associates
recently shed some light on the benefits
and drawbacks of each type.

Frank is a veteran and proponent of
vendor-based training seminars, having
taken courses offered by such compa-
nies as Sun and Microsoft. These on-site
courses require time off from his usual
assignments, so he tries to fit them in
between contracts.

“The biggest advantage to these
kinds of courses is that you’re going
straight to the source,” he says. “If the
people who built the application aren’t
the experts, who is? On the other hand,
they’re also evangelists for the product,
so you won’t get a critical perspective
that you might get from a neutral
instructor.”

Frank also likes interacting with the
other people at the training sessions, as
they bring a variety of experiences and
perspectives. “I’ve made some good net-
working contacts and friends taking
these courses,” he says. “And most peo-
ple seem to be at similar skill and expe-
rience levels.”

There tends to be a lot of lab time in
these courses and the chance for interac-
tion with the instructor and other partic-
ipants can make for an in-depth learning
experience. “You just don’t get that from
a book or a CD-ROM,” says Frank.

Mike, a senior engineer, has taken
plenty of vendor-sponsored courses, but
he’s also had good experiences with train-
ing that’s approved (but not taught) by the
vendors. Companies like New Horizons
offer classes in major brand-name tech-
nologies, “and the instructors can be
objective about the products,” he says.

“It helps to know the problems with
an application or a technology as you’re
learning how to use it,” says Mike. “The
instructors can talk about the relative
pros and cons of different companies’
technologies in this atmosphere.”

Most of these courses offer intensive
three-to-five day seminars. “You need to
stay focused and sharp and take good
notes,” says Mike. “The intensive sched-
ule is good for me since I’d rather be
working on a project than taking days
off. But you don’t get as much hands-on
lab time as you’d get in a longer course.

“If you can get an employer to cover
the cost of this kind of training, go for
it,” says Mike. “The schools know how
much training can add to an engineer’s
hourly rate, so some of the courses can
be very expensive.”

Julie has a different view of training
based on her own learning style. “I just
don’t learn as effectively in a crash
course as I do in a long-term one,” she
says. Which is why she prefers taking
classes at local colleges.

“A night class that meets two or three
nights a week works well for me,” she
says. “I can take them while I’m on a
project and it makes a nice break from
my daily routine. A long-term course
could be a problem for someone who
travels a lot, but I don’t.”

State and community college cours-
es are much more economical than cor-
porate training, and Julie also enjoys
interacting with the other students.
“Almost everyone in the class has a day
job, so we’re all in the same boat,” she
says. “It’s a good chance to network.

“I also like the chance to work long
term with the instructors,” she says. In
the past year she’s seen an improvement
in the quality of instruction at the local

college level. “In the past, most instruc-
tors had academic backgrounds. But a
lot of people have left private industry to
teach, so now they have more real-world
industry experience.”

Tim is an engineer who thrives on mul-
tiple contracts and a lot of traveling, so
most traditional courses are not an option.
“I’m always on the road, so when I need to
pick up a class I do it online,” he says.

“A lot of them now have live stream-
ing interaction with audio and online
chat with the instructors,” he says. “For
interactive classes I do need to be at my
laptop at a certain time, but it’s kind of
cool to be taking a class while sitting in a
hotel room or waiting in an airport.”

Tim admits that modem speed and
bandwidth issues can be a problem when
accessing an interactive course on the road,
but in his case, the flexibility outweighs the
challenges. “The content of some of these
classes is archived so I can go back and
review something I might’ve missed or for-
gotten the first time around,” he says.

“Online training isn’t a perfect sys-
tem yet,” says Tim. “But I like how I can
complete courses without taking time
away from my travel or work.”

There are clearly advantages and dis-
advantages to each type of training, but
the most important thing is to choose a
course that fits your lifestyle, schedule,
and learning style.

Whether you value “from the horse’s
mouth” vendor training, the objective
neutrality of a corporate school, the old-
school comfort of a college setting, or the
flexibility of an online course, the most
important thing is to keep your skills up-
to-date and on the cutting edge.

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI

It’s no secret to anyone who works in the technology industry that continous train-
ing (and retraining) is required.The only thing that’s constant in this business is change,
and engineers need to be ahead of the curve on the latest and greatest technologies.

What’s in the next
issue of JDJ ?

TIERING INTO J2EE APPLICATIONS
What are the challenges in developing a J2EE-

based application? This article discusses EJB design
practices and Web component development.

MANAGING JAVA SOURCE CODE
DEPENDENCIES FOR SCM

There are many facets to consider in the imple-
mentation of even the most basic Software
Configuration Management (SCM). For Java, with its
import mechanism, these simple goals often become
unmanageable when the source code tree grows
beyond a certain point of complexity. This article dis-
cusses the underlying relationships that make even
basic Java SCM problematic and how to manage
them.

PLUG IN YOUR COMMAND PROCESSOR
NOW AND START SAVING MONEY!

The Command Processor tool takes a Java object
and creates a command-line interface to its public
methods. These public methods are essentially your
Application Programming Interface (API). During the
course of this article we’ll get a good look at the
java.lang.reflect package, as well as kick the tires on
the Regular Expression package included in the 1.4
JDK.

WHOLE HOUSE AUDIO IN THE PALM OF
YOUR HAND PART 3

How a Java application can easily take control of
physical systems with the right hardware, both con-
trolling hardware and responding to real-world events
(well, a doorbell).

ASK DR. JAVA
Prescriptions for your Java ailments. Answers to your
Java questions.

BUILDING
INSTALLERS

FOR OS X
Java development on OS X is very

similar to Java development on any
platform, particularly any Unix plat-
form. This article shows you how to

package your Java application into a
native OS X installer using one of the

many free development tools that
come with the platform.

FPO

ADVERTISERINDEX

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are set to protect the high edi-
torial quality of Java Developer’s Journal. All advertising is subject to approval by the Publisher. The Publisher assumes no liability for any
costs or damages incurred if for any reason the Publisher fails to publish an advertisement. In no event shall the Publisher be liable for any costs
or damages in excess of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is fully
responsible for all financial liability and terms of the contract executed by the agents or agencies who are acting on behalf of the Advertiser.
Conditions set in this document (except the rates) are subject to change by the Publisher without notice. No conditions other than those set forth
in this “General Conditions Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content
of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Publisher. This discretion
includes the positioning of the advertisement, except for “preferred positions” described in the rate table. Cancellations and changes to adver-
tisements must be made in writing before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

AccelTree www.acceltree.com/order.asp 33

Actuate Corporation www.actuate.com/info/jbjad.asp 800-884-8665 51

Altova www.altova.com 31

AltoWeb www.altoweb.com 21

Apple Computer, Inc www.apple.com/xserve 4-5

BEA dev2dev.bea.com/useworkshop 6

Borland Software Corp. www.borland.com/new/jb7/5068.html 800-252-5547 23

Capella University www.capella.edu/dsk 888-CAPELLA ext. 6024 39

Crystal Decisions www.crystaldecisions.com/cr9/002/ 888-333-6007 13

Engenuity Technologies www.jloox.com 800-684-5669 45

ESRI www.esri.com/arcims 888-289-5084 35

Fiorano Software www.fiorano.com 800-663-3621 59

HiT Software www.hitsw.com/xmlrdb 408-345-4001 55

IBM ibm.com/developerWorks/linux/cd 28-29

IBM ibm.com/db2/rocks 41

IIT Software GmbH www.swiftmq.com 50

Improv Technologies www.improv-tech.com/jdj/download 65

InetSoft Technology Corp. www.inetsoft.com/jdj 888-216-2353 63

Infragistics, Inc. www.infragistics.com 800-231-8588 14-15

INT, Inc www.int.com 713-975-7434 12

iSavvix http://community.isavvix.com 69

Ittoolbox www.Ittoolbox.com 71

Java Developer's Journal www.sys-con.com/java 75

JBOSS www.jboss.org 58

JDJ Store www.jdjstore.com 79

Jinfonet www.jinfonet.com/jdj9.htm 301-838-5560 47

Macromedia www.macromedia.com/go/jrun4jdj 37

Motorola www.motorola.com/developers/wireless 8

\n software inc. www.nsoftware.com 49

n-ary www.javaSOS.com 73

Northwoods Software www.nwoods.com/go/ 800-434-9820 70

Oracle Corp. www.oracle.com/ad 800-633-1072 17

Our World Live 105

Parasoft Corporation www.parasoft.com/jdj9 888-305-0041 43

Precise Software www.precise.com/jdj 800-310-4777 27

QUALCOMM Incorporated http://brew.qualcomm.com/ZJD4 53

Rational Software www.rational.com/offer/javacd2 11

Sitraka www.sitraka.com/jclass/jdj 800-663-4723 19

Sitraka www.sitraka.com/jprobe/jdj 800-663-4723 57

Sitraka www.sitraka.com/performasure/jdj 800-663-4723 106

Sonic Software www.sonicsoftware.com/jdj 800-989-3773 2

Spiritsoft www.spiritsoft.com/climber 25

Zero G www.zerog.com 415-512-7771 3, 67

ADVERTISER URL PHONE PAGE

AUTHOR BIO
Blair Wyman is a software
engineer working for IBM
in Rochester, Minnesota,
home of the IBM iSeries.

Jav
a D

ude
s

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

106 SEPTEMBER 2002

C U B I S T T H R E A D S

It seems as if I’m constantly han-
dling “product placement” e-mails
from big-shot marketing types, begging
me to scrupulously avoid any mention
of their products whatsoever. (They
always add that “whatsoever” in there,
as if I’d try to sneak something in on
them. Well, you don’t have to hit me
over the head with an Uncle Bernie’s
Fine Cavalla mackerel!)

I’ve been up to my scalp in Java
code again this month and have
enjoyed many opportunities to reflect
on its unique strengths and weakness-
es. Most of these wool-gathering ses-
sions end rather abruptly, as a build
completes, a button needs pushing, or
another blankety-blank test case blows
bitwise chunks all over the logs. Reality
intrudes with an indelicately echoed
Ctrl-G, and it’s another trip to the top of
the E/C/D waterfall (and me without
my barrel). I can’t believe they pay me
to have all this fun.

One thought that keeps recurring
during these flights of javac-induced
fancy is the very different nature of the
bugs I find myself chasing and squish-
ing in Java, compared with the other
languages I’ve used (and I’ve used a
few).

At the risk of dropping my preten-
tiously thin veil of false humility – the
one you’ve seen through since day one
– I must say I’ve cranked out some seri-
ous code since becoming a profession-
al programmer, and there’s no end in
sight. Some of the popular languages
I’ve used (and abused) include REXX,

MASM, Tcl, awk, gawk, Perl, Pascal,
Modula-2, C, C++, csh, and my favorite,
Java (of course). At best, I’ve “mastered”
maybe one or two of these languages at
some point over the years. (Sometimes
I imagine that Java belongs on my
“mastery” list…then I wake up.)

Way back before this whole
overblown “microprocessor” fad per-
turbed the orderly Hollerithic land-
scape of fanfold batch computing, I
even programmed something called an
“electronic analog” computer (and
badly, at that).

Electronic analog computers are
“programmed” using patch cords and
panels, and I was not without innate
skills in that area, even in high school.
In fact, I was a natural. I’m here to tell
you I could plug and unplug those
patch cords lickety-split, thank-you-
very-much.

Unfortunately, since I didn’t have
any idea which plugs to patch where,
my results stunk (often literally, wafting
an aroma of melting plastic insulation).
I guess I should have paid attention to
that Calc II prerequisite, after all.

With apologies to Henry Spencer
(author of the “Ten Commandments
for C Programmers”), perhaps there is
an analog computing axiom/corol-
lary/lemma for would-be OO program-
mers: “Be careful how you hook your
objects together, lest they stink.” Yeah,
that quote will ensure me a spot in his-
tory. You betcha.

Anyway, analog computers are real-
ly quite remarkable. If you patch

together the right combination of
plugs, you can accurately and continu-
ously model complicated parallel
mathematical equations of many vari-
ables. To the extent that these mathe-
matical equations correctly model an
“analogous” physical system, the elec-
tronic system behaves just like that leaf
spring, or that ambient vapor pressure,
or that trout population, or that ICBM
nose cone. (If you’re interested in find-
ing out more about analog computing,
try dropping the phrase “analog com-
puter” into your favorite search engine
or visit Doug Coward’s wonderful
“Analog Computer Museum” Web site,
http://dcoward.best.vwh.net/analog/.)

So far, I’ve yet to chase a pointer bug
in Java, but that’s not to say that it’s all a
bed of roses. For my part, I’ve found
Java’s principle sanity thief usually
extends java.lang.Thread or imple-
ments java.lang.Runnable; thread syn-
chronization bugs can be deucedly dif-
ficult to dispatch or dismember.

I remember a piece of multithread-
ed Java code missing some synchro-
nization in a chained assignment state-
ment:

inNdx = outNdx = 0;

It’s around 4:00 p.m. on Friday when
the call comes in: “We’ve encountered an
ArrayIndexOutOfBoundsException that
stinks like burning insulation. You didn’t
let Wyman near this code, did you?”

blair@blairwyman.com

WRITTEN BY
BLAIR WYMAN

I’ve been weaving these threads of cubist pseudo-conscious-
ness for over a year now, and the consequences of such promiscu-
ous international celebrity are really starting to get out of hand.

iostream of Consciousness

83SEPTEMBER 2002

Java COM

our world live
ourworldlive.com

Java COM

84 SEPTEMBER 2002

sitraka
www.sitraka.com

